强化学习的无人机巡逻

C. Piciarelli, G. Foresti
{"title":"强化学习的无人机巡逻","authors":"C. Piciarelli, G. Foresti","doi":"10.1145/3349801.3349805","DOIUrl":null,"url":null,"abstract":"When a camera-equipped drone is assigned a patrolling task, it typically follows a pre-defined path that evenly covers the whole environment. In this paper instead we consider the problem of finding an ideal path under the assumption that not all the areas have the same coverage requirements. We thus propose a reinforcement learning approach that, given a relevance map representing coverage requirements, autonomously chooses the best drone actions to optimize the coverage.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Drone patrolling with reinforcement learning\",\"authors\":\"C. Piciarelli, G. Foresti\",\"doi\":\"10.1145/3349801.3349805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a camera-equipped drone is assigned a patrolling task, it typically follows a pre-defined path that evenly covers the whole environment. In this paper instead we consider the problem of finding an ideal path under the assumption that not all the areas have the same coverage requirements. We thus propose a reinforcement learning approach that, given a relevance map representing coverage requirements, autonomously chooses the best drone actions to optimize the coverage.\",\"PeriodicalId\":299138,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349801.3349805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3349805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

当配备摄像头的无人机被分配巡逻任务时,它通常会遵循一条预先定义的路径,均匀地覆盖整个环境。在本文中,我们考虑在并非所有区域都具有相同覆盖要求的假设下寻找理想路径的问题。因此,我们提出了一种强化学习方法,给定表示覆盖需求的相关图,自主选择最佳无人机行动来优化覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drone patrolling with reinforcement learning
When a camera-equipped drone is assigned a patrolling task, it typically follows a pre-defined path that evenly covers the whole environment. In this paper instead we consider the problem of finding an ideal path under the assumption that not all the areas have the same coverage requirements. We thus propose a reinforcement learning approach that, given a relevance map representing coverage requirements, autonomously chooses the best drone actions to optimize the coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信