实用Lipschitz土匪

Tianyu Wang, Weicheng Ye, Dawei Geng, C. Rudin
{"title":"实用Lipschitz土匪","authors":"Tianyu Wang, Weicheng Ye, Dawei Geng, C. Rudin","doi":"10.1145/3412815.3416885","DOIUrl":null,"url":null,"abstract":"Stochastic Lipschitz bandit algorithms balance exploration and exploitation, and have been used for a variety of important task domains. In this paper, we present a framework for Lipschitz bandit methods that adaptively learns partitions of context- and arm-space. Due to this flexibility, the algorithm is able to efficiently optimize rewards and minimize regret, by focusing on the portions of the space that are most relevant. In our analysis, we link tree-based methods to Gaussian processes. In light of our analysis, we design a novel hierarchical Bayesian model for Lipschitz bandit problems. Our experiments show that our algorithms can achieve state-of-the-art performance in challenging real-world tasks such as neural network hyperparameter tuning.","PeriodicalId":176130,"journal":{"name":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Towards Practical Lipschitz Bandits\",\"authors\":\"Tianyu Wang, Weicheng Ye, Dawei Geng, C. Rudin\",\"doi\":\"10.1145/3412815.3416885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Lipschitz bandit algorithms balance exploration and exploitation, and have been used for a variety of important task domains. In this paper, we present a framework for Lipschitz bandit methods that adaptively learns partitions of context- and arm-space. Due to this flexibility, the algorithm is able to efficiently optimize rewards and minimize regret, by focusing on the portions of the space that are most relevant. In our analysis, we link tree-based methods to Gaussian processes. In light of our analysis, we design a novel hierarchical Bayesian model for Lipschitz bandit problems. Our experiments show that our algorithms can achieve state-of-the-art performance in challenging real-world tasks such as neural network hyperparameter tuning.\",\"PeriodicalId\":176130,\"journal\":{\"name\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412815.3416885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412815.3416885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

随机Lipschitz算法平衡了探索和利用,并已用于各种重要的任务领域。在本文中,我们提出了一个自适应学习上下文空间和武器空间划分的Lipschitz bandit方法框架。由于这种灵活性,算法能够有效地优化奖励和最小化遗憾,通过关注空间中最相关的部分。在我们的分析中,我们将基于树的方法与高斯过程联系起来。根据我们的分析,我们设计了一种新的分层贝叶斯模型来解决Lipschitz土匪问题。我们的实验表明,我们的算法可以在具有挑战性的现实世界任务(如神经网络超参数调谐)中达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Practical Lipschitz Bandits
Stochastic Lipschitz bandit algorithms balance exploration and exploitation, and have been used for a variety of important task domains. In this paper, we present a framework for Lipschitz bandit methods that adaptively learns partitions of context- and arm-space. Due to this flexibility, the algorithm is able to efficiently optimize rewards and minimize regret, by focusing on the portions of the space that are most relevant. In our analysis, we link tree-based methods to Gaussian processes. In light of our analysis, we design a novel hierarchical Bayesian model for Lipschitz bandit problems. Our experiments show that our algorithms can achieve state-of-the-art performance in challenging real-world tasks such as neural network hyperparameter tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信