基于肽序列标签的盲识别SVM模型

Hui Li, Chunmei Liu, Xumin Liu, M. Diakite, L. Burge, A. Yakubu, W. Southerland
{"title":"基于肽序列标签的盲识别SVM模型","authors":"Hui Li, Chunmei Liu, Xumin Liu, M. Diakite, L. Burge, A. Yakubu, W. Southerland","doi":"10.1109/ICMLA.2010.156","DOIUrl":null,"url":null,"abstract":"Identifying the ion types for a mass spectrum is essential for interpreting the spectrum and deriving its peptide sequence. In this paper, we proposed a novel method for identifying ion types and deriving matched peptide sequences for tandem mass spectra. We first divided our dataset into a training set and a testing set and then preprocessed the data using a Support Vector Machine and a 5-fold cross validation based dual denoting model. Then we constructed a syntax tree and generated a rule set to match the mass values from experimental mass spectra with the mass spectral values from corresponding theoretical mass spectra. Finally we applied the proposed algorithm to a tandem mass spectral dataset consisting of 2656 spectra from yeast. Compared with other methods, the experimental results showed that the proposed method can effectively filter noise and successfully derive peptide sequences.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide Sequence Tag-Based Blind Identification-based SVM Model\",\"authors\":\"Hui Li, Chunmei Liu, Xumin Liu, M. Diakite, L. Burge, A. Yakubu, W. Southerland\",\"doi\":\"10.1109/ICMLA.2010.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the ion types for a mass spectrum is essential for interpreting the spectrum and deriving its peptide sequence. In this paper, we proposed a novel method for identifying ion types and deriving matched peptide sequences for tandem mass spectra. We first divided our dataset into a training set and a testing set and then preprocessed the data using a Support Vector Machine and a 5-fold cross validation based dual denoting model. Then we constructed a syntax tree and generated a rule set to match the mass values from experimental mass spectra with the mass spectral values from corresponding theoretical mass spectra. Finally we applied the proposed algorithm to a tandem mass spectral dataset consisting of 2656 spectra from yeast. Compared with other methods, the experimental results showed that the proposed method can effectively filter noise and successfully derive peptide sequences.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定质谱中的离子类型对于解释谱和推导其肽序列至关重要。在本文中,我们提出了一种新的方法来识别离子类型和衍生匹配肽序列的串联质谱。我们首先将数据集分为训练集和测试集,然后使用支持向量机和基于5倍交叉验证的对偶表示模型对数据进行预处理。然后构建语法树,生成规则集,将实验质谱的质量值与相应理论质谱的质量值进行匹配。最后,我们将该算法应用于一个包含2656个酵母谱的串联质谱数据集。实验结果表明,该方法能够有效地滤除噪声,并成功地推导出肽序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide Sequence Tag-Based Blind Identification-based SVM Model
Identifying the ion types for a mass spectrum is essential for interpreting the spectrum and deriving its peptide sequence. In this paper, we proposed a novel method for identifying ion types and deriving matched peptide sequences for tandem mass spectra. We first divided our dataset into a training set and a testing set and then preprocessed the data using a Support Vector Machine and a 5-fold cross validation based dual denoting model. Then we constructed a syntax tree and generated a rule set to match the mass values from experimental mass spectra with the mass spectral values from corresponding theoretical mass spectra. Finally we applied the proposed algorithm to a tandem mass spectral dataset consisting of 2656 spectra from yeast. Compared with other methods, the experimental results showed that the proposed method can effectively filter noise and successfully derive peptide sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信