{"title":"基于卷积神经网络的视觉相似手写汉字识别","authors":"Wei Liu, Kian Ming Lim, C. Lee","doi":"10.1109/ICoICT52021.2021.9527449","DOIUrl":null,"url":null,"abstract":"Computer vision has penetrated many domains, for instance, security, sports, health and medicine, agriculture, transportation, manufacturing, retail, and so like. One of the computer vision tasks is character recognition. In this work, a visually similar handwritten Chinese character dataset is collected. Subsequently, an enhanced convolutional neural network is proposed for the recognition of visually similar handwritten Chinese characters. The convolutional neural network is enhanced by the dropout regularization and early stopping mechanism to reduce the overfitting problem. The Adam optimizer is also leveraged to accelerate and optimize the training process of the convolutional neural network. The empirical results demonstrate that the enhanced convolutional neural network achieves a 97% accuracy, thus corroborate it has better discriminating power in visually similar handwritten Chinese character recognition.","PeriodicalId":191671,"journal":{"name":"2021 9th International Conference on Information and Communication Technology (ICoICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visually Similar Handwritten Chinese Character Recognition with Convolutional Neural Network\",\"authors\":\"Wei Liu, Kian Ming Lim, C. Lee\",\"doi\":\"10.1109/ICoICT52021.2021.9527449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision has penetrated many domains, for instance, security, sports, health and medicine, agriculture, transportation, manufacturing, retail, and so like. One of the computer vision tasks is character recognition. In this work, a visually similar handwritten Chinese character dataset is collected. Subsequently, an enhanced convolutional neural network is proposed for the recognition of visually similar handwritten Chinese characters. The convolutional neural network is enhanced by the dropout regularization and early stopping mechanism to reduce the overfitting problem. The Adam optimizer is also leveraged to accelerate and optimize the training process of the convolutional neural network. The empirical results demonstrate that the enhanced convolutional neural network achieves a 97% accuracy, thus corroborate it has better discriminating power in visually similar handwritten Chinese character recognition.\",\"PeriodicalId\":191671,\"journal\":{\"name\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT52021.2021.9527449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT52021.2021.9527449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visually Similar Handwritten Chinese Character Recognition with Convolutional Neural Network
Computer vision has penetrated many domains, for instance, security, sports, health and medicine, agriculture, transportation, manufacturing, retail, and so like. One of the computer vision tasks is character recognition. In this work, a visually similar handwritten Chinese character dataset is collected. Subsequently, an enhanced convolutional neural network is proposed for the recognition of visually similar handwritten Chinese characters. The convolutional neural network is enhanced by the dropout regularization and early stopping mechanism to reduce the overfitting problem. The Adam optimizer is also leveraged to accelerate and optimize the training process of the convolutional neural network. The empirical results demonstrate that the enhanced convolutional neural network achieves a 97% accuracy, thus corroborate it has better discriminating power in visually similar handwritten Chinese character recognition.