GPS轨迹中频繁时空活动的轻量级提取

Athanasios Bamis, A. Savvides
{"title":"GPS轨迹中频繁时空活动的轻量级提取","authors":"Athanasios Bamis, A. Savvides","doi":"10.1109/RTSS.2010.33","DOIUrl":null,"url":null,"abstract":"In this paper we present a classification of human movement in physical space into spatio-temporal activities (STAs) and classes thereof. Drawing from our experiences with real human data from GPS traces we define a clustering approach for STA extraction based on the amount of motion of the user in space and time. Our solution captures these properties in a lightweight online algorithm that can run inside mobile devices. We then cluster the discovered STAs into classes based on a similarity metric that aims to identify which activities (STAs) are consistent in time. In contrast to previous approaches of discovering important places, this work also utilizes the temporal properties of the data to extract more realistic STAs and STA classes. Our work is evaluated through simulations and real GPS traces.","PeriodicalId":202891,"journal":{"name":"2010 31st IEEE Real-Time Systems Symposium","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Lightweight Extraction of Frequent Spatio-Temporal Activities from GPS Traces\",\"authors\":\"Athanasios Bamis, A. Savvides\",\"doi\":\"10.1109/RTSS.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a classification of human movement in physical space into spatio-temporal activities (STAs) and classes thereof. Drawing from our experiences with real human data from GPS traces we define a clustering approach for STA extraction based on the amount of motion of the user in space and time. Our solution captures these properties in a lightweight online algorithm that can run inside mobile devices. We then cluster the discovered STAs into classes based on a similarity metric that aims to identify which activities (STAs) are consistent in time. In contrast to previous approaches of discovering important places, this work also utilizes the temporal properties of the data to extract more realistic STAs and STA classes. Our work is evaluated through simulations and real GPS traces.\",\"PeriodicalId\":202891,\"journal\":{\"name\":\"2010 31st IEEE Real-Time Systems Symposium\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 31st IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 31st IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在本文中,我们提出了人类运动在物理空间的分类为时空活动(sta)和类。根据我们对GPS轨迹的真实人类数据的经验,我们定义了一种基于用户在空间和时间上的运动量的STA提取聚类方法。我们的解决方案在一个轻量级的在线算法中捕获这些属性,该算法可以在移动设备中运行。然后,我们根据相似性度量将发现的sta聚类成类,该度量旨在确定哪些活动(sta)在时间上是一致的。与之前发现重要地点的方法不同,这项工作还利用数据的时间属性来提取更真实的STA和STA类。我们的工作通过模拟和真实的GPS跟踪来评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Extraction of Frequent Spatio-Temporal Activities from GPS Traces
In this paper we present a classification of human movement in physical space into spatio-temporal activities (STAs) and classes thereof. Drawing from our experiences with real human data from GPS traces we define a clustering approach for STA extraction based on the amount of motion of the user in space and time. Our solution captures these properties in a lightweight online algorithm that can run inside mobile devices. We then cluster the discovered STAs into classes based on a similarity metric that aims to identify which activities (STAs) are consistent in time. In contrast to previous approaches of discovering important places, this work also utilizes the temporal properties of the data to extract more realistic STAs and STA classes. Our work is evaluated through simulations and real GPS traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信