多语种实践的实践实践情感分析经典

Eva Liyan Woro Ningrum, A. Widodo
{"title":"多语种实践的实践实践情感分析经典","authors":"Eva Liyan Woro Ningrum, A. Widodo","doi":"10.14710/jfma.v1i2.18","DOIUrl":null,"url":null,"abstract":"GO-JEK is an information technology-based service consisting of 3 main services, namely GO-JEK, GO-LIFE, and GO-PAY. As time goes by, customer complaints arise about the lack of satisfaction with GO-JEK services. One measure of GO-JEK customer service satisfaction can be acknowledged by way of analyzing sentiments on the data of public opinion twett submitted on the twitter official account, @gojekindonesia. In this research, sentiment analysis was carried out using the Naïve Bayes Classifier learning algorithm. The number of data twitts used is 9987. The twit data is labeled according to the class which includes positive, negative and neutral classes. Then the next process is data preprocessing consisting of cleansing, tokenization, filtering, stemming, and stopword removal. The evaluation method using 10-fold cross validation with the results obtained is precision value of 80%, recall of 80%, f1-score of 80%, maximum accuracy of 82% and average accuracy of 79%.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPLEMENTASI METODE MULTINOMIAL NAÏVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN\",\"authors\":\"Eva Liyan Woro Ningrum, A. Widodo\",\"doi\":\"10.14710/jfma.v1i2.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GO-JEK is an information technology-based service consisting of 3 main services, namely GO-JEK, GO-LIFE, and GO-PAY. As time goes by, customer complaints arise about the lack of satisfaction with GO-JEK services. One measure of GO-JEK customer service satisfaction can be acknowledged by way of analyzing sentiments on the data of public opinion twett submitted on the twitter official account, @gojekindonesia. In this research, sentiment analysis was carried out using the Naïve Bayes Classifier learning algorithm. The number of data twitts used is 9987. The twit data is labeled according to the class which includes positive, negative and neutral classes. Then the next process is data preprocessing consisting of cleansing, tokenization, filtering, stemming, and stopword removal. The evaluation method using 10-fold cross validation with the results obtained is precision value of 80%, recall of 80%, f1-score of 80%, maximum accuracy of 82% and average accuracy of 79%.\",\"PeriodicalId\":359074,\"journal\":{\"name\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental Mathematics and Applications (JFMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jfma.v1i2.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v1i2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

GO-JEK是一个基于信息技术的服务,由GO-JEK、GO-LIFE和GO-PAY三个主要服务组成。随着时间的推移,客户抱怨GO-JEK的服务不满意。通过分析twitter官方账号@gojekindonesia上提交的民意推文数据的情绪,可以认识到GO-JEK客户服务满意度的一个衡量标准。在本研究中,使用Naïve贝叶斯分类器学习算法进行情感分析。使用的数据tweet数为9987。推特数据按类别进行标注,类别包括正类、负类和中性类。然后下一个过程是数据预处理,包括清理、标记化、过滤、词干提取和停止词删除。采用10倍交叉验证的评价方法,得到精密度值为80%,召回率为80%,f1评分为80%,最高准确率为82%,平均准确率为79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPLEMENTASI METODE MULTINOMIAL NAÏVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN
GO-JEK is an information technology-based service consisting of 3 main services, namely GO-JEK, GO-LIFE, and GO-PAY. As time goes by, customer complaints arise about the lack of satisfaction with GO-JEK services. One measure of GO-JEK customer service satisfaction can be acknowledged by way of analyzing sentiments on the data of public opinion twett submitted on the twitter official account, @gojekindonesia. In this research, sentiment analysis was carried out using the Naïve Bayes Classifier learning algorithm. The number of data twitts used is 9987. The twit data is labeled according to the class which includes positive, negative and neutral classes. Then the next process is data preprocessing consisting of cleansing, tokenization, filtering, stemming, and stopword removal. The evaluation method using 10-fold cross validation with the results obtained is precision value of 80%, recall of 80%, f1-score of 80%, maximum accuracy of 82% and average accuracy of 79%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信