从头开始设计处理器,以允许电压/可靠性权衡

A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori
{"title":"从头开始设计处理器,以允许电压/可靠性权衡","authors":"A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori","doi":"10.1109/HPCA.2010.5416652","DOIUrl":null,"url":null,"abstract":"Current processor designs have a critical operating point that sets a hard limit on voltage scaling. Any scaling beyond the critical voltage results in exceeding the maximum allowable error rate, i.e., there are more timing errors than can be effectively and gainfully detected or corrected by an error-tolerance mechanism. This limits the effectiveness of voltage scaling as a knob for reliability/power tradeoffs. In this paper, we present power-aware slack redistribution, a novel design-level approach to allow voltage/reliability tradeoffs in processors. Techniques based on power-aware slack redistribution reapportion timing slack of the frequently-occurring, near-critical timing paths of a processor in a power- and area-efficient manner, such that we increase the range of voltages over which the incidence of operational (timing) errors is acceptable. This results in soft architectures — designs that fail gracefully, allowing us to perform reliability/power tradeoffs by reducing voltage up to the point that produces maximum allowable errors for our application. The goal of our optimization is to minimize the voltage at which a soft architecture encounters the maximum allowable error rate, thus maximizing the range over which voltage scaling is possible and minimizing power consumption for a given error rate. Our experiments demonstrate 23% power savings over the baseline design at an error rate of 1%. Observed power reductions are 29%, 29%, 19%, and 20% for error rates of 2%, 4%, 8%, and 16% respectively. Benefits are higher in the face of error recovery using Razor. Area overhead of our techniques is up to 2.7%.","PeriodicalId":368621,"journal":{"name":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Designing a processor from the ground up to allow voltage/reliability tradeoffs\",\"authors\":\"A. Kahng, Seokhyeong Kang, Rakesh Kumar, J. Sartori\",\"doi\":\"10.1109/HPCA.2010.5416652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current processor designs have a critical operating point that sets a hard limit on voltage scaling. Any scaling beyond the critical voltage results in exceeding the maximum allowable error rate, i.e., there are more timing errors than can be effectively and gainfully detected or corrected by an error-tolerance mechanism. This limits the effectiveness of voltage scaling as a knob for reliability/power tradeoffs. In this paper, we present power-aware slack redistribution, a novel design-level approach to allow voltage/reliability tradeoffs in processors. Techniques based on power-aware slack redistribution reapportion timing slack of the frequently-occurring, near-critical timing paths of a processor in a power- and area-efficient manner, such that we increase the range of voltages over which the incidence of operational (timing) errors is acceptable. This results in soft architectures — designs that fail gracefully, allowing us to perform reliability/power tradeoffs by reducing voltage up to the point that produces maximum allowable errors for our application. The goal of our optimization is to minimize the voltage at which a soft architecture encounters the maximum allowable error rate, thus maximizing the range over which voltage scaling is possible and minimizing power consumption for a given error rate. Our experiments demonstrate 23% power savings over the baseline design at an error rate of 1%. Observed power reductions are 29%, 29%, 19%, and 20% for error rates of 2%, 4%, 8%, and 16% respectively. Benefits are higher in the face of error recovery using Razor. Area overhead of our techniques is up to 2.7%.\",\"PeriodicalId\":368621,\"journal\":{\"name\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2010.5416652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2010.5416652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

摘要

目前的处理器设计有一个关键的操作点,设置了电压缩放的硬限制。超过临界电压的任何缩放都会导致超过最大允许错误率,即,有更多的定时错误,而不是通过容错机制有效和有收益地检测或纠正。这限制了电压缩放作为可靠性/功率权衡的旋钮的有效性。在本文中,我们提出了功率感知的松弛再分配,这是一种新颖的设计级方法,允许处理器中的电压/可靠性权衡。基于功率感知松弛重分配的技术以功率和面积效率的方式重新分配处理器频繁发生的近临界时序路径的时序松弛,从而增加可接受的操作(时序)错误发生率的电压范围。这导致了软架构——设计优雅地失败,允许我们通过降低电压来执行可靠性/功率权衡,直到我们的应用程序产生最大允许错误的点。我们优化的目标是最小化软架构遇到最大允许错误率时的电压,从而最大化电压缩放的可能范围,并最小化给定错误率下的功耗。我们的实验表明,在错误率为1%的情况下,比基线设计节省23%的功率。当错误率分别为2%、4%、8%和16%时,观察到的功耗降低分别为29%、29%、19%和20%。在使用Razor进行错误恢复时,收益更高。我们的技术的面积开销高达2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a processor from the ground up to allow voltage/reliability tradeoffs
Current processor designs have a critical operating point that sets a hard limit on voltage scaling. Any scaling beyond the critical voltage results in exceeding the maximum allowable error rate, i.e., there are more timing errors than can be effectively and gainfully detected or corrected by an error-tolerance mechanism. This limits the effectiveness of voltage scaling as a knob for reliability/power tradeoffs. In this paper, we present power-aware slack redistribution, a novel design-level approach to allow voltage/reliability tradeoffs in processors. Techniques based on power-aware slack redistribution reapportion timing slack of the frequently-occurring, near-critical timing paths of a processor in a power- and area-efficient manner, such that we increase the range of voltages over which the incidence of operational (timing) errors is acceptable. This results in soft architectures — designs that fail gracefully, allowing us to perform reliability/power tradeoffs by reducing voltage up to the point that produces maximum allowable errors for our application. The goal of our optimization is to minimize the voltage at which a soft architecture encounters the maximum allowable error rate, thus maximizing the range over which voltage scaling is possible and minimizing power consumption for a given error rate. Our experiments demonstrate 23% power savings over the baseline design at an error rate of 1%. Observed power reductions are 29%, 29%, 19%, and 20% for error rates of 2%, 4%, 8%, and 16% respectively. Benefits are higher in the face of error recovery using Razor. Area overhead of our techniques is up to 2.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信