一类相关不确定性的Kharitonov对偶定理

R. Tempo
{"title":"一类相关不确定性的Kharitonov对偶定理","authors":"R. Tempo","doi":"10.1109/CDC.1988.194371","DOIUrl":null,"url":null,"abstract":"The author provides a simple criterion for the strict Hurwitz property of uncertain polynomials with coefficients q epsilon R/sup n-1/ varying in a given diamond Q/sub D/. Since Q/sub D/ is the set dual to the rectangle Q/sub R/ considered by V.L. Kharitonov (1978), the result obtained is called the dual theorem of Kharitonov. This theorem shows that a family of polynomials with coefficients q varying in the diamond Q/sub D/ is strictly Hurwitz if and only if eight one-dimensional edges of the diamond are strictly Hurwitz.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The dual theorem of Kharitonov for a class of dependent uncertainties\",\"authors\":\"R. Tempo\",\"doi\":\"10.1109/CDC.1988.194371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author provides a simple criterion for the strict Hurwitz property of uncertain polynomials with coefficients q epsilon R/sup n-1/ varying in a given diamond Q/sub D/. Since Q/sub D/ is the set dual to the rectangle Q/sub R/ considered by V.L. Kharitonov (1978), the result obtained is called the dual theorem of Kharitonov. This theorem shows that a family of polynomials with coefficients q varying in the diamond Q/sub D/ is strictly Hurwitz if and only if eight one-dimensional edges of the diamond are strictly Hurwitz.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文给出了在给定菱形q / D/上,系数q / R/sup n-1/变化的不确定多项式的严格Hurwitz性质的一个简单判据。由于Q/下标D/是V.L. Kharitonov(1978)所考虑的矩形Q/下标R/的对偶集,因此所得到的结果称为Kharitonov对偶定理。这个定理表明,在菱形q /下标D/中,系数q变化的多项式族是严格赫尔维茨的当且仅当菱形的八个一维边是严格赫尔维茨。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual theorem of Kharitonov for a class of dependent uncertainties
The author provides a simple criterion for the strict Hurwitz property of uncertain polynomials with coefficients q epsilon R/sup n-1/ varying in a given diamond Q/sub D/. Since Q/sub D/ is the set dual to the rectangle Q/sub R/ considered by V.L. Kharitonov (1978), the result obtained is called the dual theorem of Kharitonov. This theorem shows that a family of polynomials with coefficients q varying in the diamond Q/sub D/ is strictly Hurwitz if and only if eight one-dimensional edges of the diamond are strictly Hurwitz.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信