比较社交网络中交通事件的检测和披露:基于Twitter和Waze的智能方法

Sebastián Vallejos, Brian Caimmi, D. Alonso, Luis Berdún, Á. Soria
{"title":"比较社交网络中交通事件的检测和披露:基于Twitter和Waze的智能方法","authors":"Sebastián Vallejos, Brian Caimmi, D. Alonso, Luis Berdún, Á. Soria","doi":"10.4114/INTARTIF.VOL21ISS61PP47-66","DOIUrl":null,"url":null,"abstract":"Nowadays, social networks have become  in a  communication  medium widely  used to disseminate any type  of  information. In  particular,  the  shared  information  in  social  networks  usually  includes  a  considerable number of traffic incidents reports of specific cities. In light of this, specialized social networks have emerged for detecting and disseminating traffic incidents, differentiating from generic social networks in which a wide variety of  topics  are  communicated.  In this  context,  Twitter  is  a  case  in  point  of  a  generic  social  network  in  which  its users often share information about traffic incidents, while Waze is a social network specialized in traffic. In this paper we present a comparative study between Waze and an intelligent approach that detects traffic incidents by analyzing publications shared in Twitter. The comparative study was carried out considering Ciudad Autonoma de Buenos  Aires  (CABA),  Argentina,  as  the  region  of  interest.  The results of this work suggest that both social networks should be considered as complementary sources of information. This conclusion is based on the fact that the proportion of mutual detections, i.e. traffic incidents detected by both approaches, was considerably low since it did not exceed 6% of the cases. Moreover, the results do not show that any of the approaches tend to anticipate in time to the other one in the detection of traffic incidents.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"9 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing detection and disclosure of traffic incidents in social networks: an intelligent approach based on Twitter vs. Waze\",\"authors\":\"Sebastián Vallejos, Brian Caimmi, D. Alonso, Luis Berdún, Á. Soria\",\"doi\":\"10.4114/INTARTIF.VOL21ISS61PP47-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, social networks have become  in a  communication  medium widely  used to disseminate any type  of  information. In  particular,  the  shared  information  in  social  networks  usually  includes  a  considerable number of traffic incidents reports of specific cities. In light of this, specialized social networks have emerged for detecting and disseminating traffic incidents, differentiating from generic social networks in which a wide variety of  topics  are  communicated.  In this  context,  Twitter  is  a  case  in  point  of  a  generic  social  network  in  which  its users often share information about traffic incidents, while Waze is a social network specialized in traffic. In this paper we present a comparative study between Waze and an intelligent approach that detects traffic incidents by analyzing publications shared in Twitter. The comparative study was carried out considering Ciudad Autonoma de Buenos  Aires  (CABA),  Argentina,  as  the  region  of  interest.  The results of this work suggest that both social networks should be considered as complementary sources of information. This conclusion is based on the fact that the proportion of mutual detections, i.e. traffic incidents detected by both approaches, was considerably low since it did not exceed 6% of the cases. Moreover, the results do not show that any of the approaches tend to anticipate in time to the other one in the detection of traffic incidents.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"9 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/INTARTIF.VOL21ISS61PP47-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL21ISS61PP47-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,社交网络已经成为一种广泛用于传播任何类型信息的传播媒介。特别是社交网络上的共享信息通常包含相当数量的特定城市的交通事故报告。有鉴于此,专门用于检测和传播交通事件的社交网络出现了,这与传播各种主题的通用社交网络有所区别。在这种情况下,Twitter是一个典型的通用社交网络,其用户经常在其中分享有关交通事件的信息,而Waze则是一个专门研究交通的社交网络。在本文中,我们对Waze和一种通过分析Twitter上共享的出版物来检测交通事件的智能方法进行了比较研究。比较研究是考虑到阿根廷布宜诺斯艾利斯自治城(CABA)作为感兴趣的地区进行的。这项工作的结果表明,这两个社会网络应被视为互补的信息来源。这一结论是基于这样一个事实,即相互检测的比例,即通过两种方法检测到的交通事故,相当低,因为它不超过6%的案件。此外,结果表明,在交通事故的检测中,任何一种方法都不倾向于及时预测另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing detection and disclosure of traffic incidents in social networks: an intelligent approach based on Twitter vs. Waze
Nowadays, social networks have become  in a  communication  medium widely  used to disseminate any type  of  information. In  particular,  the  shared  information  in  social  networks  usually  includes  a  considerable number of traffic incidents reports of specific cities. In light of this, specialized social networks have emerged for detecting and disseminating traffic incidents, differentiating from generic social networks in which a wide variety of  topics  are  communicated.  In this  context,  Twitter  is  a  case  in  point  of  a  generic  social  network  in  which  its users often share information about traffic incidents, while Waze is a social network specialized in traffic. In this paper we present a comparative study between Waze and an intelligent approach that detects traffic incidents by analyzing publications shared in Twitter. The comparative study was carried out considering Ciudad Autonoma de Buenos  Aires  (CABA),  Argentina,  as  the  region  of  interest.  The results of this work suggest that both social networks should be considered as complementary sources of information. This conclusion is based on the fact that the proportion of mutual detections, i.e. traffic incidents detected by both approaches, was considerably low since it did not exceed 6% of the cases. Moreover, the results do not show that any of the approaches tend to anticipate in time to the other one in the detection of traffic incidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信