{"title":"嵌入式系统的自动符号验证","authors":"R. Alur, T. Henzinger, Pei-Hsin Ho","doi":"10.1109/REAL.1993.393520","DOIUrl":null,"url":null,"abstract":"We present a model checking procedure and its implementation for the automatic verification of embedded systems. Systems are represented by hybrid automata - machines with finite control and real-valued variables modeling continuous environment parameters such as time, pressure, and temperature. System properties are specified in a real-time temporal logic and verified by symbolic computation. The verification procedure, implemented in Mathematica, is used to prove digital controllers and distributed algorithms correct. The verifier checks safety, liveness, time-bounded, and duration properties of hybrid automata.<<ETX>>","PeriodicalId":198313,"journal":{"name":"1993 Proceedings Real-Time Systems Symposium","volume":"8 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"671","resultStr":"{\"title\":\"Automatic symbolic verification of embedded systems\",\"authors\":\"R. Alur, T. Henzinger, Pei-Hsin Ho\",\"doi\":\"10.1109/REAL.1993.393520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model checking procedure and its implementation for the automatic verification of embedded systems. Systems are represented by hybrid automata - machines with finite control and real-valued variables modeling continuous environment parameters such as time, pressure, and temperature. System properties are specified in a real-time temporal logic and verified by symbolic computation. The verification procedure, implemented in Mathematica, is used to prove digital controllers and distributed algorithms correct. The verifier checks safety, liveness, time-bounded, and duration properties of hybrid automata.<<ETX>>\",\"PeriodicalId\":198313,\"journal\":{\"name\":\"1993 Proceedings Real-Time Systems Symposium\",\"volume\":\"8 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"671\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 Proceedings Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REAL.1993.393520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 Proceedings Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REAL.1993.393520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic symbolic verification of embedded systems
We present a model checking procedure and its implementation for the automatic verification of embedded systems. Systems are represented by hybrid automata - machines with finite control and real-valued variables modeling continuous environment parameters such as time, pressure, and temperature. System properties are specified in a real-time temporal logic and verified by symbolic computation. The verification procedure, implemented in Mathematica, is used to prove digital controllers and distributed algorithms correct. The verifier checks safety, liveness, time-bounded, and duration properties of hybrid automata.<>