{"title":"为了所有人的利益而自私:资源高效传输车辆传感器数据的上下文强盗","authors":"Benjamin Sliwa, Rick Adam, C. Wietfeld","doi":"10.1145/3397166.3413466","DOIUrl":null,"url":null,"abstract":"In this work, we present Black Spot-aware Contextual Bandit (BS-CB) as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acting selfish for the good of all: contextual bandits for resource-efficient transmission of vehicular sensor data\",\"authors\":\"Benjamin Sliwa, Rick Adam, C. Wietfeld\",\"doi\":\"10.1145/3397166.3413466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present Black Spot-aware Contextual Bandit (BS-CB) as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.\",\"PeriodicalId\":122577,\"journal\":{\"name\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397166.3413466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3413466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acting selfish for the good of all: contextual bandits for resource-efficient transmission of vehicular sensor data
In this work, we present Black Spot-aware Contextual Bandit (BS-CB) as a novel client-based method for resource-efficient opportunistic transmission of delay-tolerant vehicular sensor data. BS-CB applies a hybrid approach which brings together all major machine learning disciplines - supervised, unsupervised, and reinforcement learning - in order to autonomously schedule vehicular sensor data transmissions with respect to the expected resource efficiency. Within a comprehensive real world performance evaluation in the public cellular networks of three Mobile Network Operators (MNOs), it is found that 1) The average uplink data rate is improved by 125%-195% 2) The apparently selfish goal of data rate optimization reduces the amount of occupied cell resources by 84%-89% 3) The average transmission-related power consumption can be reduced by 53%-75% 4) The price to pay is an additional buffering delay due to the opportunistic medium access strategy.