上下文位置的双聚类可视化以帮助决策:超越具有平行坐标的子空间

Daniel Gonçalves, Rafael S. Costa, Rui Henriques
{"title":"上下文位置的双聚类可视化以帮助决策:超越具有平行坐标的子空间","authors":"Daniel Gonçalves, Rafael S. Costa, Rui Henriques","doi":"10.1145/3531073.3531124","DOIUrl":null,"url":null,"abstract":"Pattern discovery and subspace clustering are pervasive tasks across biological, biotechnological, and biomedical domains. Parallel coordinates plots and heatmaps are reference visualizations for individual biclusters. Both have been object of improvements over time, with a special emphasis on heatmaps, commonly used in gene expression analysis. However, the emphasis is solely placed on the corresponding subspace, preventing an assessment of biclusters’ significance against global regularities. This work proposes an improvement on bicluster visualization by disruptively extending parallel coordinates representations with the means to compare the local bicluster against the remaining dataset instances helping in the contextualization of a pattern in the broader picture of an entire dataset. The proposed solution is the first able to deal with mixed data types and is independent from the underlying biclustering or pattern mining algorithm. Results in different data domains show the utility of the proposed visualization, especially in primary phases where visual inspection of biclusters is used.","PeriodicalId":412533,"journal":{"name":"Proceedings of the 2022 International Conference on Advanced Visual Interfaces","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-situated visualization of biclusters to aid decisions: going beyond subspaces with parallel coordinates\",\"authors\":\"Daniel Gonçalves, Rafael S. Costa, Rui Henriques\",\"doi\":\"10.1145/3531073.3531124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern discovery and subspace clustering are pervasive tasks across biological, biotechnological, and biomedical domains. Parallel coordinates plots and heatmaps are reference visualizations for individual biclusters. Both have been object of improvements over time, with a special emphasis on heatmaps, commonly used in gene expression analysis. However, the emphasis is solely placed on the corresponding subspace, preventing an assessment of biclusters’ significance against global regularities. This work proposes an improvement on bicluster visualization by disruptively extending parallel coordinates representations with the means to compare the local bicluster against the remaining dataset instances helping in the contextualization of a pattern in the broader picture of an entire dataset. The proposed solution is the first able to deal with mixed data types and is independent from the underlying biclustering or pattern mining algorithm. Results in different data domains show the utility of the proposed visualization, especially in primary phases where visual inspection of biclusters is used.\",\"PeriodicalId\":412533,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Advanced Visual Interfaces\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531073.3531124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531073.3531124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模式发现和子空间聚类是横跨生物、生物技术和生物医学领域的普遍任务。平行坐标图和热图是单个双聚类的参考可视化。随着时间的推移,两者都已成为改进的对象,特别强调热图,通常用于基因表达分析。然而,重点仅仅放在相应的子空间上,阻止了对双聚类对全局规律的重要性的评估。这项工作提出了对双聚类可视化的改进,通过破坏性地扩展并行坐标表示,将局部双聚类与剩余的数据集实例进行比较,有助于在整个数据集的更广泛图像中实现模式的上下文化。提出的解决方案是第一个能够处理混合数据类型的解决方案,并且独立于底层的双聚类或模式挖掘算法。不同数据域的结果显示了所提出的可视化的实用性,特别是在使用双聚类视觉检查的初级阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-situated visualization of biclusters to aid decisions: going beyond subspaces with parallel coordinates
Pattern discovery and subspace clustering are pervasive tasks across biological, biotechnological, and biomedical domains. Parallel coordinates plots and heatmaps are reference visualizations for individual biclusters. Both have been object of improvements over time, with a special emphasis on heatmaps, commonly used in gene expression analysis. However, the emphasis is solely placed on the corresponding subspace, preventing an assessment of biclusters’ significance against global regularities. This work proposes an improvement on bicluster visualization by disruptively extending parallel coordinates representations with the means to compare the local bicluster against the remaining dataset instances helping in the contextualization of a pattern in the broader picture of an entire dataset. The proposed solution is the first able to deal with mixed data types and is independent from the underlying biclustering or pattern mining algorithm. Results in different data domains show the utility of the proposed visualization, especially in primary phases where visual inspection of biclusters is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信