对不断发展的数据流进行预测分析,预测并适应已知和未知环境的变化

Mykola Pechenizkiy
{"title":"对不断发展的数据流进行预测分析,预测并适应已知和未知环境的变化","authors":"Mykola Pechenizkiy","doi":"10.1109/HPCSim.2015.7237112","DOIUrl":null,"url":null,"abstract":"Ever increasing volumes of sensor readings, transactional records, web data and event logs call for next generation of big data mining technology providing effective and efficient tools for making use of the streaming data. Predictive analytics on data streams is actively studied in research communities and used in the real-world applications that in turn put in the spotlight several important challenges to be addressed. In this talk I will focus on the challenges of dealing with evolving data streams. In dynamically changing and nonstationary environments, the data distribution can change over time. When such changes can be anticipated and modeled explicitly, we can design context-aware predictive models. When such changes in underlying data distribution over time are unexpected, we deal with the so-called problem of concept drift. I will highlight some of the recent developments in the proactive handling of concept drift and link them to research in context-aware predictive modeling. I will also share some of the insights we gained through the performed case studies in the domains of web analytics, stress analytics, and food sales analytics.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive analytics on evolving data streams anticipating and adapting to changes in known and unknown contexts\",\"authors\":\"Mykola Pechenizkiy\",\"doi\":\"10.1109/HPCSim.2015.7237112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ever increasing volumes of sensor readings, transactional records, web data and event logs call for next generation of big data mining technology providing effective and efficient tools for making use of the streaming data. Predictive analytics on data streams is actively studied in research communities and used in the real-world applications that in turn put in the spotlight several important challenges to be addressed. In this talk I will focus on the challenges of dealing with evolving data streams. In dynamically changing and nonstationary environments, the data distribution can change over time. When such changes can be anticipated and modeled explicitly, we can design context-aware predictive models. When such changes in underlying data distribution over time are unexpected, we deal with the so-called problem of concept drift. I will highlight some of the recent developments in the proactive handling of concept drift and link them to research in context-aware predictive modeling. I will also share some of the insights we gained through the performed case studies in the domains of web analytics, stress analytics, and food sales analytics.\",\"PeriodicalId\":134009,\"journal\":{\"name\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2015.7237112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的传感器读数、交易记录、网络数据和事件日志要求下一代大数据挖掘技术为利用流数据提供有效和高效的工具。数据流的预测分析在研究界得到了积极的研究,并在现实世界的应用中得到了应用,这反过来又使一些需要解决的重要挑战成为人们关注的焦点。在这次演讲中,我将重点讨论处理不断发展的数据流所面临的挑战。在动态变化和非平稳的环境中,数据分布可能随时间而变化。当这些变化可以被明确地预测和建模时,我们可以设计上下文感知的预测模型。当底层数据分布随时间的变化是不可预测的,我们处理所谓的概念漂移问题。我将重点介绍主动处理概念漂移的一些最新进展,并将它们与上下文感知预测建模的研究联系起来。我还将分享我们在网络分析、压力分析和食品销售分析等领域的案例研究中获得的一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive analytics on evolving data streams anticipating and adapting to changes in known and unknown contexts
Ever increasing volumes of sensor readings, transactional records, web data and event logs call for next generation of big data mining technology providing effective and efficient tools for making use of the streaming data. Predictive analytics on data streams is actively studied in research communities and used in the real-world applications that in turn put in the spotlight several important challenges to be addressed. In this talk I will focus on the challenges of dealing with evolving data streams. In dynamically changing and nonstationary environments, the data distribution can change over time. When such changes can be anticipated and modeled explicitly, we can design context-aware predictive models. When such changes in underlying data distribution over time are unexpected, we deal with the so-called problem of concept drift. I will highlight some of the recent developments in the proactive handling of concept drift and link them to research in context-aware predictive modeling. I will also share some of the insights we gained through the performed case studies in the domains of web analytics, stress analytics, and food sales analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信