H. Fu, Meiling Wang, Siyuan Cheng, Tong Liu, Xuan Xiao, M. Fu
{"title":"液-圆角加速度计流体系统质量-弹簧-阻尼器模型的粒子群优化","authors":"H. Fu, Meiling Wang, Siyuan Cheng, Tong Liu, Xuan Xiao, M. Fu","doi":"10.1109/I2MTC.2019.8826901","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized mass-spring-damper (MSD) model of the fluidic system in liquid-circular angular accelerometer (LCAA). The particle swarm optimization (PSO) is implemented to determine the parameters including stiffness of spring and damping coefficient in MSD model. The simulation results indicate that the proposed model manifests favorable consistency with the transient flow model whose validity has been proved. The influences of structure factors of LCAA, including radius of the tube and cross-sectional area of the tube, are analyzed in simulations, which are then verified by prototypes in experiments. The conclusions are used for structural optimum design. Eventually, the MSD model optimized with PSO is proved to be effective to predict frequency response of fluidic system.","PeriodicalId":132588,"journal":{"name":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass-Spring-Damper Model Optimized with PSO of the Fluidic System in Liquid-Circular Angular Accelerometer\",\"authors\":\"H. Fu, Meiling Wang, Siyuan Cheng, Tong Liu, Xuan Xiao, M. Fu\",\"doi\":\"10.1109/I2MTC.2019.8826901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized mass-spring-damper (MSD) model of the fluidic system in liquid-circular angular accelerometer (LCAA). The particle swarm optimization (PSO) is implemented to determine the parameters including stiffness of spring and damping coefficient in MSD model. The simulation results indicate that the proposed model manifests favorable consistency with the transient flow model whose validity has been proved. The influences of structure factors of LCAA, including radius of the tube and cross-sectional area of the tube, are analyzed in simulations, which are then verified by prototypes in experiments. The conclusions are used for structural optimum design. Eventually, the MSD model optimized with PSO is proved to be effective to predict frequency response of fluidic system.\",\"PeriodicalId\":132588,\"journal\":{\"name\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2019.8826901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2019.8826901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass-Spring-Damper Model Optimized with PSO of the Fluidic System in Liquid-Circular Angular Accelerometer
This paper presents an optimized mass-spring-damper (MSD) model of the fluidic system in liquid-circular angular accelerometer (LCAA). The particle swarm optimization (PSO) is implemented to determine the parameters including stiffness of spring and damping coefficient in MSD model. The simulation results indicate that the proposed model manifests favorable consistency with the transient flow model whose validity has been proved. The influences of structure factors of LCAA, including radius of the tube and cross-sectional area of the tube, are analyzed in simulations, which are then verified by prototypes in experiments. The conclusions are used for structural optimum design. Eventually, the MSD model optimized with PSO is proved to be effective to predict frequency response of fluidic system.