设计基于张拉整体的轻量化结构和可定制热膨胀材料

Rochelle E. Silverman, E. Hernandez
{"title":"设计基于张拉整体的轻量化结构和可定制热膨胀材料","authors":"Rochelle E. Silverman, E. Hernandez","doi":"10.1115/detc2019-97304","DOIUrl":null,"url":null,"abstract":"\n In this work, we analyze and design structures and materials that possess custom thermal expansion. These structures and materials are composed of a base unit inspired by the tensegrity “D-bar” (or double-pyramid) topology. We derive, for the first time, analytical equations for the linearized and geometrically exact coefficients of thermal expansion (CTEs) of bi-material D-bar structures with arbitrary shape and complexity. Numerical results obtained using the geometrically exact CTE equations are compared with results obtained using the linearized CTE equations, showing that the latter are accurate only in cases where temperature changes are small. Further results show that D-bar structures of low complexity can produce a wide range of CTEs, including positive, zero, and negative values. These CTE values are exhibited for a range of materials that allows for easy manufacturing (materials with CTE ratios as low as 2). Thus, it is concluded that D-bar structures show promise for applications in aerospace engineering and other fields where new materials of tailorable thermal expansion are needed to decrease the substantial thermal stresses caused by large temperature changes.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Designing Lightweight Tensegrity-Based Structures and Materials of Tailorable Thermal Expansion\",\"authors\":\"Rochelle E. Silverman, E. Hernandez\",\"doi\":\"10.1115/detc2019-97304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, we analyze and design structures and materials that possess custom thermal expansion. These structures and materials are composed of a base unit inspired by the tensegrity “D-bar” (or double-pyramid) topology. We derive, for the first time, analytical equations for the linearized and geometrically exact coefficients of thermal expansion (CTEs) of bi-material D-bar structures with arbitrary shape and complexity. Numerical results obtained using the geometrically exact CTE equations are compared with results obtained using the linearized CTE equations, showing that the latter are accurate only in cases where temperature changes are small. Further results show that D-bar structures of low complexity can produce a wide range of CTEs, including positive, zero, and negative values. These CTE values are exhibited for a range of materials that allows for easy manufacturing (materials with CTE ratios as low as 2). Thus, it is concluded that D-bar structures show promise for applications in aerospace engineering and other fields where new materials of tailorable thermal expansion are needed to decrease the substantial thermal stresses caused by large temperature changes.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们分析和设计具有定制热膨胀的结构和材料。这些结构和材料由受张拉整体“D-bar”(或双金字塔)拓扑结构启发的基本单元组成。本文首次推导了具有任意形状和复杂性的双材料d -棒状结构的线性化和几何精确的热膨胀系数的解析方程。将几何精确CTE方程与线性化CTE方程的数值结果进行了比较,结果表明线性化CTE方程只有在温度变化较小的情况下才准确。进一步的结果表明,低复杂度的D-bar结构可以产生广泛的cte值,包括正、零和负值。这些CTE值适用于一系列易于制造的材料(CTE比低至2的材料)。因此,可以得出结论,d -杆结构在航空航天工程和其他需要可定制热膨胀新材料以减少大温度变化引起的大量热应力的领域中具有应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Lightweight Tensegrity-Based Structures and Materials of Tailorable Thermal Expansion
In this work, we analyze and design structures and materials that possess custom thermal expansion. These structures and materials are composed of a base unit inspired by the tensegrity “D-bar” (or double-pyramid) topology. We derive, for the first time, analytical equations for the linearized and geometrically exact coefficients of thermal expansion (CTEs) of bi-material D-bar structures with arbitrary shape and complexity. Numerical results obtained using the geometrically exact CTE equations are compared with results obtained using the linearized CTE equations, showing that the latter are accurate only in cases where temperature changes are small. Further results show that D-bar structures of low complexity can produce a wide range of CTEs, including positive, zero, and negative values. These CTE values are exhibited for a range of materials that allows for easy manufacturing (materials with CTE ratios as low as 2). Thus, it is concluded that D-bar structures show promise for applications in aerospace engineering and other fields where new materials of tailorable thermal expansion are needed to decrease the substantial thermal stresses caused by large temperature changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信