迈向通用文本分类器:使用百科知识的迁移学习

Pu Wang, C. Domeniconi
{"title":"迈向通用文本分类器:使用百科知识的迁移学习","authors":"Pu Wang, C. Domeniconi","doi":"10.1109/ICDMW.2009.101","DOIUrl":null,"url":null,"abstract":"Document classification is a key task for many text mining applications. However, traditional text classification requires labeled data to construct reliable and accurate classifiers. Unfortunately, labeled data are seldom available. In this work, we propose a {\\textit {universal text classifier}}, which does not require any labeled document. Our approach simulates the capability of people to classify documents based on background knowledge. As such, we build a classifier that can effectively group documents based on their content, under the guidance of few words describing the classes of interest. Background knowledge is modeled using encyclopedic knowledge, namely Wikipedia. The universal text classifier can also be used to perform document retrieval. In our experiments with real data we test the feasibility of our approach for both the classification and retrieval tasks.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Towards a Universal Text Classifier: Transfer Learning Using Encyclopedic Knowledge\",\"authors\":\"Pu Wang, C. Domeniconi\",\"doi\":\"10.1109/ICDMW.2009.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document classification is a key task for many text mining applications. However, traditional text classification requires labeled data to construct reliable and accurate classifiers. Unfortunately, labeled data are seldom available. In this work, we propose a {\\\\textit {universal text classifier}}, which does not require any labeled document. Our approach simulates the capability of people to classify documents based on background knowledge. As such, we build a classifier that can effectively group documents based on their content, under the guidance of few words describing the classes of interest. Background knowledge is modeled using encyclopedic knowledge, namely Wikipedia. The universal text classifier can also be used to perform document retrieval. In our experiments with real data we test the feasibility of our approach for both the classification and retrieval tasks.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

文档分类是许多文本挖掘应用程序的关键任务。然而,传统的文本分类需要标记数据来构建可靠和准确的分类器。不幸的是,标记数据很少可用。在这项工作中,我们提出了一个{\textit{通用文本分类器}},它不需要任何标记的文档。我们的方法模拟了人们根据背景知识对文档进行分类的能力。因此,我们构建了一个分类器,它可以在描述感兴趣的类的几个单词的指导下,根据文档的内容有效地对文档进行分组。背景知识使用百科知识建模,即维基百科。通用文本分类器也可用于执行文档检索。在实际数据的实验中,我们测试了该方法在分类和检索任务上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a Universal Text Classifier: Transfer Learning Using Encyclopedic Knowledge
Document classification is a key task for many text mining applications. However, traditional text classification requires labeled data to construct reliable and accurate classifiers. Unfortunately, labeled data are seldom available. In this work, we propose a {\textit {universal text classifier}}, which does not require any labeled document. Our approach simulates the capability of people to classify documents based on background knowledge. As such, we build a classifier that can effectively group documents based on their content, under the guidance of few words describing the classes of interest. Background knowledge is modeled using encyclopedic knowledge, namely Wikipedia. The universal text classifier can also be used to perform document retrieval. In our experiments with real data we test the feasibility of our approach for both the classification and retrieval tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信