评价投票方法对基于集成的分类的影响

Florin Leon, S. Floria, C. Bǎdicǎ
{"title":"评价投票方法对基于集成的分类的影响","authors":"Florin Leon, S. Floria, C. Bǎdicǎ","doi":"10.1109/INISTA.2017.8001122","DOIUrl":null,"url":null,"abstract":"Bagging is a popular method used to increase the accuracy of classification, by training a set of classifiers on slightly different datasets and aggregating their output by voting. Usually, the majority voting is used for this purpose, or the plurality voting, when the problem has multiple class values. In this study, we analyze the influence of several voting methods on the performance of two classification algorithms used for datasets with different levels of difficulty. The results reveal that the single transferable vote can be a good alternative to plurality voting, although it has the drawback of a higher computational cost related to the calculation of preference ordering.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Evaluating the effect of voting methods on ensemble-based classification\",\"authors\":\"Florin Leon, S. Floria, C. Bǎdicǎ\",\"doi\":\"10.1109/INISTA.2017.8001122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bagging is a popular method used to increase the accuracy of classification, by training a set of classifiers on slightly different datasets and aggregating their output by voting. Usually, the majority voting is used for this purpose, or the plurality voting, when the problem has multiple class values. In this study, we analyze the influence of several voting methods on the performance of two classification algorithms used for datasets with different levels of difficulty. The results reveal that the single transferable vote can be a good alternative to plurality voting, although it has the drawback of a higher computational cost related to the calculation of preference ordering.\",\"PeriodicalId\":314687,\"journal\":{\"name\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2017.8001122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

Bagging是一种常用的用于提高分类准确性的方法,它通过在稍微不同的数据集上训练一组分类器,并通过投票来汇总它们的输出。通常,多数投票用于此目的,或者当问题具有多个类值时使用多数投票。在本研究中,我们分析了几种投票方法对用于不同难度数据集的两种分类算法性能的影响。结果表明,单一可转移投票可以作为多数投票的一种很好的替代方案,尽管它存在与偏好排序计算相关的较高计算成本的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the effect of voting methods on ensemble-based classification
Bagging is a popular method used to increase the accuracy of classification, by training a set of classifiers on slightly different datasets and aggregating their output by voting. Usually, the majority voting is used for this purpose, or the plurality voting, when the problem has multiple class values. In this study, we analyze the influence of several voting methods on the performance of two classification algorithms used for datasets with different levels of difficulty. The results reveal that the single transferable vote can be a good alternative to plurality voting, although it has the drawback of a higher computational cost related to the calculation of preference ordering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信