Lijian Zhang, Liang Jin, W. Luo, Yanqun Tang, Dingjiu Yu
{"title":"放大前向多天线中继系统的鲁棒联合波束形成和人工噪声设计","authors":"Lijian Zhang, Liang Jin, W. Luo, Yanqun Tang, Dingjiu Yu","doi":"10.1109/ICASSP.2015.7178267","DOIUrl":null,"url":null,"abstract":"In this paper, we address physical layer security for amplify-and-forward (AF) multi-antenna relay systems in the presence of multiple eavesdroppers. A robust joint design of cooperative beamforming (CB) and artificial noise (AN) is proposed with imperfect channel state information (CSI) of both the destination and the eavesdroppers. We aim to maximize the worst-case secrecy rate subject to the sum power and the per-antenna power constraints at the relay. Such joint design problem is non-convex. By utilizing the semidefinite relaxation (SDR) technique, S-procedure and the successive convex approximation (SCA) algorithm, the original non-convex optimization problem is recast into a series of semidefinite programs (SDPs) which can be efficiently solved using interior-methods. Simulation results are presented to verify the effectiveness of the proposed design.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust joint beamforming and artificial noise design for amplify-and-forward multi-antenna relay systems\",\"authors\":\"Lijian Zhang, Liang Jin, W. Luo, Yanqun Tang, Dingjiu Yu\",\"doi\":\"10.1109/ICASSP.2015.7178267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address physical layer security for amplify-and-forward (AF) multi-antenna relay systems in the presence of multiple eavesdroppers. A robust joint design of cooperative beamforming (CB) and artificial noise (AN) is proposed with imperfect channel state information (CSI) of both the destination and the eavesdroppers. We aim to maximize the worst-case secrecy rate subject to the sum power and the per-antenna power constraints at the relay. Such joint design problem is non-convex. By utilizing the semidefinite relaxation (SDR) technique, S-procedure and the successive convex approximation (SCA) algorithm, the original non-convex optimization problem is recast into a series of semidefinite programs (SDPs) which can be efficiently solved using interior-methods. Simulation results are presented to verify the effectiveness of the proposed design.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust joint beamforming and artificial noise design for amplify-and-forward multi-antenna relay systems
In this paper, we address physical layer security for amplify-and-forward (AF) multi-antenna relay systems in the presence of multiple eavesdroppers. A robust joint design of cooperative beamforming (CB) and artificial noise (AN) is proposed with imperfect channel state information (CSI) of both the destination and the eavesdroppers. We aim to maximize the worst-case secrecy rate subject to the sum power and the per-antenna power constraints at the relay. Such joint design problem is non-convex. By utilizing the semidefinite relaxation (SDR) technique, S-procedure and the successive convex approximation (SCA) algorithm, the original non-convex optimization problem is recast into a series of semidefinite programs (SDPs) which can be efficiently solved using interior-methods. Simulation results are presented to verify the effectiveness of the proposed design.