Hengbiao Yu, Zhenbang Chen, Yufeng Zhang, Ji Wang, Wei Dong
{"title":"RGSE: Java的常规属性引导符号执行器","authors":"Hengbiao Yu, Zhenbang Chen, Yufeng Zhang, Ji Wang, Wei Dong","doi":"10.1145/3106237.3122830","DOIUrl":null,"url":null,"abstract":"It is challenging to effectively check a regular property of a program. This paper presents RGSE, a regular property guided dynamic symbolic execution (DSE) engine, for finding a program path satisfying a regular property as soon as possible. The key idea is to evaluate the candidate branches based on the history and future information, and explore the branches along which the paths are more likely to satisfy the property in priority. We have applied RGSE to 16 real-world open source Java programs, totaling 270K lines of code. Compared with the state-of-the-art, RGSE achieves two orders of magnitude speedups for finding the first target path. RGSE can benefit many research topics of software testing and analysis, such as path-oriented test case generation, typestate bug finding, and performance tuning. The demo video is at: https://youtu.be/7zAhvRIdaUU, and RGSE can be accessed at: http://jrgse.github.io.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"RGSE: a regular property guided symbolic executor for Java\",\"authors\":\"Hengbiao Yu, Zhenbang Chen, Yufeng Zhang, Ji Wang, Wei Dong\",\"doi\":\"10.1145/3106237.3122830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is challenging to effectively check a regular property of a program. This paper presents RGSE, a regular property guided dynamic symbolic execution (DSE) engine, for finding a program path satisfying a regular property as soon as possible. The key idea is to evaluate the candidate branches based on the history and future information, and explore the branches along which the paths are more likely to satisfy the property in priority. We have applied RGSE to 16 real-world open source Java programs, totaling 270K lines of code. Compared with the state-of-the-art, RGSE achieves two orders of magnitude speedups for finding the first target path. RGSE can benefit many research topics of software testing and analysis, such as path-oriented test case generation, typestate bug finding, and performance tuning. The demo video is at: https://youtu.be/7zAhvRIdaUU, and RGSE can be accessed at: http://jrgse.github.io.\",\"PeriodicalId\":313494,\"journal\":{\"name\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106237.3122830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3122830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RGSE: a regular property guided symbolic executor for Java
It is challenging to effectively check a regular property of a program. This paper presents RGSE, a regular property guided dynamic symbolic execution (DSE) engine, for finding a program path satisfying a regular property as soon as possible. The key idea is to evaluate the candidate branches based on the history and future information, and explore the branches along which the paths are more likely to satisfy the property in priority. We have applied RGSE to 16 real-world open source Java programs, totaling 270K lines of code. Compared with the state-of-the-art, RGSE achieves two orders of magnitude speedups for finding the first target path. RGSE can benefit many research topics of software testing and analysis, such as path-oriented test case generation, typestate bug finding, and performance tuning. The demo video is at: https://youtu.be/7zAhvRIdaUU, and RGSE can be accessed at: http://jrgse.github.io.