{"title":"GPU加速图像对齐飞溅","authors":"N. Neophytou, K. Mueller","doi":"10.2312/VG/VG05/197-205","DOIUrl":null,"url":null,"abstract":"Splatting is a popular technique for volume rendering, where voxels are represented by Gaussian kernels, whose pre-integrated footprints are accumulated to form the image. Splatting has been mainly used to render pre-shaded volumes, which can result in significant blurring in zoomed views. This can be avoided in the image-aligned splatting scheme, where one accumulates kernel slices into equi-distant, parallel sheet buffers, followed by classification, shading, and compositing. In this work, we attempt to evolve this algorithm to the next level: GPU (graphics processing unit) based acceleration. First we describe the challenges that the highly parallel \"Gather\" architecture of modern GPUs poses to the \"Scatter\" based nature of a splatting algorithm. We then describe a number of strategies that exploit newly introduced features of the latest-generation hardware to address these limitations. Two crucial operations to boost the performance in image-aligned splatting are the early elimination of hidden splats and the skipping of empty buffer-space. We describe mechanisms which take advantage of the early z-culling hardware facilities to accomplish both of these operations efficiently in hardware.","PeriodicalId":443333,"journal":{"name":"Fourth International Workshop on Volume Graphics, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"GPU accelerated image aligned splatting\",\"authors\":\"N. Neophytou, K. Mueller\",\"doi\":\"10.2312/VG/VG05/197-205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Splatting is a popular technique for volume rendering, where voxels are represented by Gaussian kernels, whose pre-integrated footprints are accumulated to form the image. Splatting has been mainly used to render pre-shaded volumes, which can result in significant blurring in zoomed views. This can be avoided in the image-aligned splatting scheme, where one accumulates kernel slices into equi-distant, parallel sheet buffers, followed by classification, shading, and compositing. In this work, we attempt to evolve this algorithm to the next level: GPU (graphics processing unit) based acceleration. First we describe the challenges that the highly parallel \\\"Gather\\\" architecture of modern GPUs poses to the \\\"Scatter\\\" based nature of a splatting algorithm. We then describe a number of strategies that exploit newly introduced features of the latest-generation hardware to address these limitations. Two crucial operations to boost the performance in image-aligned splatting are the early elimination of hidden splats and the skipping of empty buffer-space. We describe mechanisms which take advantage of the early z-culling hardware facilities to accomplish both of these operations efficiently in hardware.\",\"PeriodicalId\":443333,\"journal\":{\"name\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VG/VG05/197-205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Volume Graphics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VG/VG05/197-205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Splatting is a popular technique for volume rendering, where voxels are represented by Gaussian kernels, whose pre-integrated footprints are accumulated to form the image. Splatting has been mainly used to render pre-shaded volumes, which can result in significant blurring in zoomed views. This can be avoided in the image-aligned splatting scheme, where one accumulates kernel slices into equi-distant, parallel sheet buffers, followed by classification, shading, and compositing. In this work, we attempt to evolve this algorithm to the next level: GPU (graphics processing unit) based acceleration. First we describe the challenges that the highly parallel "Gather" architecture of modern GPUs poses to the "Scatter" based nature of a splatting algorithm. We then describe a number of strategies that exploit newly introduced features of the latest-generation hardware to address these limitations. Two crucial operations to boost the performance in image-aligned splatting are the early elimination of hidden splats and the skipping of empty buffer-space. We describe mechanisms which take advantage of the early z-culling hardware facilities to accomplish both of these operations efficiently in hardware.