多机电力系统的分散随机控制

M. Dehghani, A. Afshar
{"title":"多机电力系统的分散随机控制","authors":"M. Dehghani, A. Afshar","doi":"10.1109/PECON.2004.1461642","DOIUrl":null,"url":null,"abstract":"A decentralized feedback control scheme is proposed for optimization of large-scale systems. First, local controllers are used to optimize each subsystem, ignoring the interconnections. Next, an additional compensating controller was applied to minimize the effect of interactions and improve the performance of the overall system. At the cost of the suboptimal performance, this optimization strategy ensures stability of the systems under structural perturbations. To account for the modeling uncertainties, both a local Kalman filter and recursive least square algorithm are used to estimate all local states and interactions for each subsystem. The controller uses these estimates, optimizes a given performance index and then regulates the system. A sample three-bus system is given to illustrate the proposed methodologies.","PeriodicalId":375856,"journal":{"name":"PECon 2004. Proceedings. National Power and Energy Conference, 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized stochastic control of multi-machine power systems\",\"authors\":\"M. Dehghani, A. Afshar\",\"doi\":\"10.1109/PECON.2004.1461642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A decentralized feedback control scheme is proposed for optimization of large-scale systems. First, local controllers are used to optimize each subsystem, ignoring the interconnections. Next, an additional compensating controller was applied to minimize the effect of interactions and improve the performance of the overall system. At the cost of the suboptimal performance, this optimization strategy ensures stability of the systems under structural perturbations. To account for the modeling uncertainties, both a local Kalman filter and recursive least square algorithm are used to estimate all local states and interactions for each subsystem. The controller uses these estimates, optimizes a given performance index and then regulates the system. A sample three-bus system is given to illustrate the proposed methodologies.\",\"PeriodicalId\":375856,\"journal\":{\"name\":\"PECon 2004. Proceedings. National Power and Energy Conference, 2004.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PECon 2004. Proceedings. National Power and Energy Conference, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECON.2004.1461642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PECon 2004. Proceedings. National Power and Energy Conference, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2004.1461642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对大型系统的优化问题,提出了一种分散反馈控制方案。首先,本地控制器用于优化每个子系统,忽略互连。其次,采用额外的补偿控制器来减小相互作用的影响,提高整个系统的性能。该优化策略以次优性能为代价,保证了系统在结构扰动下的稳定性。为了考虑建模的不确定性,使用了局部卡尔曼滤波和递归最小二乘算法来估计每个子系统的所有局部状态和相互作用。控制器使用这些估计,优化给定的性能指标,然后调节系统。给出了一个三总线系统的示例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized stochastic control of multi-machine power systems
A decentralized feedback control scheme is proposed for optimization of large-scale systems. First, local controllers are used to optimize each subsystem, ignoring the interconnections. Next, an additional compensating controller was applied to minimize the effect of interactions and improve the performance of the overall system. At the cost of the suboptimal performance, this optimization strategy ensures stability of the systems under structural perturbations. To account for the modeling uncertainties, both a local Kalman filter and recursive least square algorithm are used to estimate all local states and interactions for each subsystem. The controller uses these estimates, optimizes a given performance index and then regulates the system. A sample three-bus system is given to illustrate the proposed methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信