J. Dahmen, Alyssa La Fleur, Gina Sprint, D. Cook, D. Weeks
{"title":"使用腕戴式传感器测量和比较康复患者的身体活动变化","authors":"J. Dahmen, Alyssa La Fleur, Gina Sprint, D. Cook, D. Weeks","doi":"10.1109/PERCOMW.2017.7917643","DOIUrl":null,"url":null,"abstract":"Wrist-worn sensors have increased in popularity in health care settings. As the use of wrist-worn sensors increases, a better understanding is needed of how to detect changes in behavior as well as an ability to quantify such changes. We introduce a statistical method to address this need. In this study, we used Fitbit Charge Heart Rate devices with two separate populations to continuously record data. There were eight participants in the healthy control group and nine in the hospitalized inpatient rehabilitation group. We performed comparisons both within the groups and between groups on the gathered step count and heart rate data. The inpatient rehabilitation group showed improved step count changes between the first half of the study participation and the second half. Heart rate did not show significant changes for either the healthy control group or inpatient rehabilitation group across time. We conclude that our statistical change analysis applied to wrist-worn sensors can effectively detect changes in physical activity that provides valuable information to patients as well as their healthcare care providers.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1962 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using wrist-worn sensors to measure and compare physical activity changes for patients undergoing rehabilitation\",\"authors\":\"J. Dahmen, Alyssa La Fleur, Gina Sprint, D. Cook, D. Weeks\",\"doi\":\"10.1109/PERCOMW.2017.7917643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wrist-worn sensors have increased in popularity in health care settings. As the use of wrist-worn sensors increases, a better understanding is needed of how to detect changes in behavior as well as an ability to quantify such changes. We introduce a statistical method to address this need. In this study, we used Fitbit Charge Heart Rate devices with two separate populations to continuously record data. There were eight participants in the healthy control group and nine in the hospitalized inpatient rehabilitation group. We performed comparisons both within the groups and between groups on the gathered step count and heart rate data. The inpatient rehabilitation group showed improved step count changes between the first half of the study participation and the second half. Heart rate did not show significant changes for either the healthy control group or inpatient rehabilitation group across time. We conclude that our statistical change analysis applied to wrist-worn sensors can effectively detect changes in physical activity that provides valuable information to patients as well as their healthcare care providers.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"1962 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using wrist-worn sensors to measure and compare physical activity changes for patients undergoing rehabilitation
Wrist-worn sensors have increased in popularity in health care settings. As the use of wrist-worn sensors increases, a better understanding is needed of how to detect changes in behavior as well as an ability to quantify such changes. We introduce a statistical method to address this need. In this study, we used Fitbit Charge Heart Rate devices with two separate populations to continuously record data. There were eight participants in the healthy control group and nine in the hospitalized inpatient rehabilitation group. We performed comparisons both within the groups and between groups on the gathered step count and heart rate data. The inpatient rehabilitation group showed improved step count changes between the first half of the study participation and the second half. Heart rate did not show significant changes for either the healthy control group or inpatient rehabilitation group across time. We conclude that our statistical change analysis applied to wrist-worn sensors can effectively detect changes in physical activity that provides valuable information to patients as well as their healthcare care providers.