{"title":"基于非随机信息的多址信道零误差容量","authors":"Ghassen Zafzouf, G. Nair, J. Evans","doi":"10.1109/ITW44776.2019.8989045","DOIUrl":null,"url":null,"abstract":"The problem of characterising the zero-error capacity region for multiple access channels even in the noiseless case has remained an open problem for over three decades. Motivated by this challenging question, a recently developed theory of nonstochastic information is applied to characterise the zero-error capacity region for the case of two correlated transmitters. Unlike previous contributions, this analysis does not assume that the blocklength is asymptotically large. Finally, a new notion of nonstochastic information is proposed for a non-cooperative problem involving three agents. These results are preliminary steps towards understanding information flows in worst-case distributed estimation and control problems.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero-Error Capacity of Multiple Access Channels via Nonstochastic Information\",\"authors\":\"Ghassen Zafzouf, G. Nair, J. Evans\",\"doi\":\"10.1109/ITW44776.2019.8989045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of characterising the zero-error capacity region for multiple access channels even in the noiseless case has remained an open problem for over three decades. Motivated by this challenging question, a recently developed theory of nonstochastic information is applied to characterise the zero-error capacity region for the case of two correlated transmitters. Unlike previous contributions, this analysis does not assume that the blocklength is asymptotically large. Finally, a new notion of nonstochastic information is proposed for a non-cooperative problem involving three agents. These results are preliminary steps towards understanding information flows in worst-case distributed estimation and control problems.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Error Capacity of Multiple Access Channels via Nonstochastic Information
The problem of characterising the zero-error capacity region for multiple access channels even in the noiseless case has remained an open problem for over three decades. Motivated by this challenging question, a recently developed theory of nonstochastic information is applied to characterise the zero-error capacity region for the case of two correlated transmitters. Unlike previous contributions, this analysis does not assume that the blocklength is asymptotically large. Finally, a new notion of nonstochastic information is proposed for a non-cooperative problem involving three agents. These results are preliminary steps towards understanding information flows in worst-case distributed estimation and control problems.