货币对多元线性回归的特征研究

R. Oetama, F. Gaol, B. Soewito, H. Warnars
{"title":"货币对多元线性回归的特征研究","authors":"R. Oetama, F. Gaol, B. Soewito, H. Warnars","doi":"10.31937/si.v13i1.2683","DOIUrl":null,"url":null,"abstract":"Due to the prospects for financial gain, forex is always attractive to many people. However, because forex market analysis is not simple, a computer is needed to assist in creating predictions using features that are understandable to people. This study employs the Multilinear Regression technique to identify these kinds of features. The features and prediction target have a very strong correlation. With a very low RMSE and a very high R square, the prediction quality is quite outstanding. The outcome will help academics in the forex field use machine learning algorithms to make better predictions.","PeriodicalId":309539,"journal":{"name":"Ultima InfoSys : Jurnal Ilmu Sistem Informasi","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding Features of Multiple Linear Regression On Currency Exchange Pairs\",\"authors\":\"R. Oetama, F. Gaol, B. Soewito, H. Warnars\",\"doi\":\"10.31937/si.v13i1.2683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the prospects for financial gain, forex is always attractive to many people. However, because forex market analysis is not simple, a computer is needed to assist in creating predictions using features that are understandable to people. This study employs the Multilinear Regression technique to identify these kinds of features. The features and prediction target have a very strong correlation. With a very low RMSE and a very high R square, the prediction quality is quite outstanding. The outcome will help academics in the forex field use machine learning algorithms to make better predictions.\",\"PeriodicalId\":309539,\"journal\":{\"name\":\"Ultima InfoSys : Jurnal Ilmu Sistem Informasi\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultima InfoSys : Jurnal Ilmu Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31937/si.v13i1.2683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultima InfoSys : Jurnal Ilmu Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31937/si.v13i1.2683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于经济收益的前景,外汇一直吸引着许多人。然而,由于外汇市场分析并不简单,因此需要一台计算机来协助使用人们可以理解的特征进行预测。本研究采用多元线性回归技术来识别这些类型的特征。特征与预测目标具有很强的相关性。RMSE非常低,R平方非常高,预测质量非常出色。这一结果将有助于外汇领域的学者使用机器学习算法做出更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Features of Multiple Linear Regression On Currency Exchange Pairs
Due to the prospects for financial gain, forex is always attractive to many people. However, because forex market analysis is not simple, a computer is needed to assist in creating predictions using features that are understandable to people. This study employs the Multilinear Regression technique to identify these kinds of features. The features and prediction target have a very strong correlation. With a very low RMSE and a very high R square, the prediction quality is quite outstanding. The outcome will help academics in the forex field use machine learning algorithms to make better predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信