{"title":"自适应感觉-运动协调神经控制器的实现","authors":"M. Kuperstein, Jorge Rubinstein","doi":"10.1109/37.24808","DOIUrl":null,"url":null,"abstract":"A theory and the prototype of a neural controller called INFANT that learns sensory-motor coordination from its own experience are presented. INFANT adapts unforeseen changes in the geometry of the physical motor system and to the location, orientation, shape, and size of objects. It can learn to accurately grasp an elongated object without any information about the geometry of the physical sensory-motor system. This new neural controller relies on the self-consistency between sensory and motor signals to achieve unsupervised learning. It is designed to be generalized for coordinating any number of sensory inputs with limbs of any number of joints. INFANT is implemented with an image processor, stereo cameras, and a 5 degrees-of-freedom robot arm. Its average grasping accuracy after learning is 3% of the arm's length in position and 6 degrees in orientation.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"7 27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Implementation of an adaptive neural controller for sensory-motor coordination\",\"authors\":\"M. Kuperstein, Jorge Rubinstein\",\"doi\":\"10.1109/37.24808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory and the prototype of a neural controller called INFANT that learns sensory-motor coordination from its own experience are presented. INFANT adapts unforeseen changes in the geometry of the physical motor system and to the location, orientation, shape, and size of objects. It can learn to accurately grasp an elongated object without any information about the geometry of the physical sensory-motor system. This new neural controller relies on the self-consistency between sensory and motor signals to achieve unsupervised learning. It is designed to be generalized for coordinating any number of sensory inputs with limbs of any number of joints. INFANT is implemented with an image processor, stereo cameras, and a 5 degrees-of-freedom robot arm. Its average grasping accuracy after learning is 3% of the arm's length in position and 6 degrees in orientation.<<ETX>>\",\"PeriodicalId\":199877,\"journal\":{\"name\":\"International 1989 Joint Conference on Neural Networks\",\"volume\":\"7 27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International 1989 Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/37.24808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/37.24808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of an adaptive neural controller for sensory-motor coordination
A theory and the prototype of a neural controller called INFANT that learns sensory-motor coordination from its own experience are presented. INFANT adapts unforeseen changes in the geometry of the physical motor system and to the location, orientation, shape, and size of objects. It can learn to accurately grasp an elongated object without any information about the geometry of the physical sensory-motor system. This new neural controller relies on the self-consistency between sensory and motor signals to achieve unsupervised learning. It is designed to be generalized for coordinating any number of sensory inputs with limbs of any number of joints. INFANT is implemented with an image processor, stereo cameras, and a 5 degrees-of-freedom robot arm. Its average grasping accuracy after learning is 3% of the arm's length in position and 6 degrees in orientation.<>