多特征方法:一个集成的基于内容的图像检索系统

Chen Liu, Zhou Wei
{"title":"多特征方法:一个集成的基于内容的图像检索系统","authors":"Chen Liu, Zhou Wei","doi":"10.1109/IPTC.2011.18","DOIUrl":null,"url":null,"abstract":"The process of retrieving desired or similar images from a large collection of images on the basis of features is referred as Content Based Image Retrieval (CBIR). In this paper, a integrated CBIR system is proposed using combined features and weighted similarity. The features include visual features of color, texture and shape and key text metadata. Some experimental simulations have been presented to show the accuracy and efficiency of the proposed retrieval method.","PeriodicalId":388589,"journal":{"name":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-feature Method: An Integrated Content Based Image Retrieval System\",\"authors\":\"Chen Liu, Zhou Wei\",\"doi\":\"10.1109/IPTC.2011.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of retrieving desired or similar images from a large collection of images on the basis of features is referred as Content Based Image Retrieval (CBIR). In this paper, a integrated CBIR system is proposed using combined features and weighted similarity. The features include visual features of color, texture and shape and key text metadata. Some experimental simulations have been presented to show the accuracy and efficiency of the proposed retrieval method.\",\"PeriodicalId\":388589,\"journal\":{\"name\":\"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTC.2011.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Symposium on Intelligence Information Processing and Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTC.2011.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于特征从大量图像集合中检索所需或相似图像的过程称为基于内容的图像检索(CBIR)。本文提出了一种基于组合特征和加权相似度的综合CBIR系统。这些特性包括颜色、纹理和形状的视觉特性以及关键的文本元数据。一些实验模拟表明了所提出的检索方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-feature Method: An Integrated Content Based Image Retrieval System
The process of retrieving desired or similar images from a large collection of images on the basis of features is referred as Content Based Image Retrieval (CBIR). In this paper, a integrated CBIR system is proposed using combined features and weighted similarity. The features include visual features of color, texture and shape and key text metadata. Some experimental simulations have been presented to show the accuracy and efficiency of the proposed retrieval method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信