学习用于图像质量评估的非线性信道化观测器

J. Brankov, I. El-Naqa, Y. Yang, M. Wernick
{"title":"学习用于图像质量评估的非线性信道化观测器","authors":"J. Brankov, I. El-Naqa, Y. Yang, M. Wernick","doi":"10.1109/NSSMIC.2003.1352405","DOIUrl":null,"url":null,"abstract":"We propose two algorithms for task-based image quality assessment based on machine learning. The channelized Hotelling observer (CHO) is a well-known numerical observer, which is used as a surrogate for human observers in assessments of lesion detectability. We explore the possibility of replacing the linear CHO with nonlinear algorithms that learn the relationship between measured image features and lesion detectability obtained from human observer studies. Our results suggest that both support vector machines and neural networks can offer improved performance over the CHO in predicting the human-observer performance.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning a nonlinear channelized observer for image quality assessment\",\"authors\":\"J. Brankov, I. El-Naqa, Y. Yang, M. Wernick\",\"doi\":\"10.1109/NSSMIC.2003.1352405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two algorithms for task-based image quality assessment based on machine learning. The channelized Hotelling observer (CHO) is a well-known numerical observer, which is used as a surrogate for human observers in assessments of lesion detectability. We explore the possibility of replacing the linear CHO with nonlinear algorithms that learn the relationship between measured image features and lesion detectability obtained from human observer studies. Our results suggest that both support vector machines and neural networks can offer improved performance over the CHO in predicting the human-observer performance.\",\"PeriodicalId\":186175,\"journal\":{\"name\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2003.1352405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2003.1352405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了两种基于机器学习的基于任务的图像质量评估算法。信道化霍特林观测器(CHO)是一种众所周知的数值观测器,它被用来代替人类观测器来评估病变的可检测性。我们探索用非线性算法取代线性CHO的可能性,该算法学习了从人类观察者研究中获得的测量图像特征与病变可检测性之间的关系。我们的研究结果表明,在预测人类观察者的表现方面,支持向量机和神经网络都可以提供比CHO更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a nonlinear channelized observer for image quality assessment
We propose two algorithms for task-based image quality assessment based on machine learning. The channelized Hotelling observer (CHO) is a well-known numerical observer, which is used as a surrogate for human observers in assessments of lesion detectability. We explore the possibility of replacing the linear CHO with nonlinear algorithms that learn the relationship between measured image features and lesion detectability obtained from human observer studies. Our results suggest that both support vector machines and neural networks can offer improved performance over the CHO in predicting the human-observer performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信