影响:无对齐面部属性分类技术

Manuel Günther, Andras Rozsa, T. Boult
{"title":"影响:无对齐面部属性分类技术","authors":"Manuel Günther, Andras Rozsa, T. Boult","doi":"10.1109/BTAS.2017.8272686","DOIUrl":null,"url":null,"abstract":"Facial attributes are soft-biometrics that allow limiting the search space, e.g., by rejecting identities with non-matching facial characteristics such as nose sizes or eyebrow shapes. In this paper, we investigate how the latest versions of deep convolutional neural networks, ResNets, perform on the facial attribute classification task. We test two loss functions: the sigmoid cross-entropy loss and the Euclidean loss, and find that for classification performance there is little difference between these two. Using an ensemble of three ResNets, we obtain the new state-of-the-art facial attribute classification error of 8.00 % on the aligned images of the CelebA dataset. More significantly, we introduce the Alignment-Free Facial Attribute Classification Technique (AFFACT), a data augmentation technique that allows a network to classify facial attributes without requiring alignment beyond detected face bounding boxes. To our best knowledge, we are the first to report similar accuracy when using only the detected bounding boxes — rather than requiring alignment based on automatically detected facial landmarks — and who can improve classification accuracy with rotating and scaling test images. We show that this approach outperforms the CelebA baseline on unaligned images with a relative improvement of 36.8 %.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"AFFACT: Alignment-free facial attribute classification technique\",\"authors\":\"Manuel Günther, Andras Rozsa, T. Boult\",\"doi\":\"10.1109/BTAS.2017.8272686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial attributes are soft-biometrics that allow limiting the search space, e.g., by rejecting identities with non-matching facial characteristics such as nose sizes or eyebrow shapes. In this paper, we investigate how the latest versions of deep convolutional neural networks, ResNets, perform on the facial attribute classification task. We test two loss functions: the sigmoid cross-entropy loss and the Euclidean loss, and find that for classification performance there is little difference between these two. Using an ensemble of three ResNets, we obtain the new state-of-the-art facial attribute classification error of 8.00 % on the aligned images of the CelebA dataset. More significantly, we introduce the Alignment-Free Facial Attribute Classification Technique (AFFACT), a data augmentation technique that allows a network to classify facial attributes without requiring alignment beyond detected face bounding boxes. To our best knowledge, we are the first to report similar accuracy when using only the detected bounding boxes — rather than requiring alignment based on automatically detected facial landmarks — and who can improve classification accuracy with rotating and scaling test images. We show that this approach outperforms the CelebA baseline on unaligned images with a relative improvement of 36.8 %.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

面部属性是允许限制搜索空间的软生物识别技术,例如,通过拒绝具有不匹配的面部特征(如鼻子大小或眉毛形状)的身份。在本文中,我们研究了最新版本的深度卷积神经网络ResNets在面部属性分类任务上的表现。我们测试了两种损失函数:s型交叉熵损失和欧几里得损失,发现两者在分类性能上差别不大。使用三个resnet的集合,我们在CelebA数据集的对齐图像上获得了新的最先进的面部属性分类误差为8.00%。更重要的是,我们引入了无对齐面部属性分类技术(AFFACT),这是一种数据增强技术,允许网络对面部属性进行分类,而不需要在检测到的面部边界框之外进行对齐。据我们所知,我们是第一个在仅使用检测到的边界框时报告相似精度的人-而不是要求基于自动检测到的面部地标进行对齐-并且可以通过旋转和缩放测试图像来提高分类精度。我们表明,这种方法在未对齐图像上的性能优于CelebA基线,相对提高了36.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFFACT: Alignment-free facial attribute classification technique
Facial attributes are soft-biometrics that allow limiting the search space, e.g., by rejecting identities with non-matching facial characteristics such as nose sizes or eyebrow shapes. In this paper, we investigate how the latest versions of deep convolutional neural networks, ResNets, perform on the facial attribute classification task. We test two loss functions: the sigmoid cross-entropy loss and the Euclidean loss, and find that for classification performance there is little difference between these two. Using an ensemble of three ResNets, we obtain the new state-of-the-art facial attribute classification error of 8.00 % on the aligned images of the CelebA dataset. More significantly, we introduce the Alignment-Free Facial Attribute Classification Technique (AFFACT), a data augmentation technique that allows a network to classify facial attributes without requiring alignment beyond detected face bounding boxes. To our best knowledge, we are the first to report similar accuracy when using only the detected bounding boxes — rather than requiring alignment based on automatically detected facial landmarks — and who can improve classification accuracy with rotating and scaling test images. We show that this approach outperforms the CelebA baseline on unaligned images with a relative improvement of 36.8 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信