管理数据库算法在确定自闭症谱系障碍、注意缺陷/多动障碍和胎儿酒精谱系障碍病例中的准确性:系统综述

S. O’Donnell, Sarah Palmeter, Meghan Laverty, C. Lagacé
{"title":"管理数据库算法在确定自闭症谱系障碍、注意缺陷/多动障碍和胎儿酒精谱系障碍病例中的准确性:系统综述","authors":"S. O’Donnell, Sarah Palmeter, Meghan Laverty, C. Lagacé","doi":"10.24095/hpcdp.42.9.01f","DOIUrl":null,"url":null,"abstract":"\n Introduction\n L'objectif de cette revue systématique était d'évaluer la validité des algorithmes des bases de données administratives utilisés pour repérer les cas de trouble du spectre de l'autisme (TSA), de trouble du déficit de l'attention/hyperactivité (TDAH) et de trouble du spectre de l'alcoolisation fœtale (TSAF).\n \n \n Méthodologie\n L'équipe de recherche a interrogé les systèmes MEDLINE, Embase, Global Health et PsycInfo afin de trouver des études, publiées en anglais ou en français entre 1995 et 2021, qui valident des algorithmes servant à recenser les cas de TSA, de TDAH et de TSAF dans les bases de données administratives. L'équipe de recherche a également consulté la littérature grise et les listes de références des études incluses. Deux évaluatrices ont procédé, de manière indépendante, à la sélection de la littérature, à l'extraction de l'information pertinente, à l'évaluation de la qualité des rapports, au risque de biais et à l'applicabilité et elles ont réalisé une synthèse qualitative des données probantes. PROSPERO CRD42019146941.\n \n \n Résultats\n Parmi les 48 articles évalués en texte intégral, 14 ont été inclus dans la revue. Aucune étude n'a été trouvée pour le TSAF. Malgré les sources de biais possibles et la grande hétérogénéité des études, les résultats donnent à penser que l'augmentation du nombre de codes de diagnostic de TSA que requiert une seule source de données augmente la spécificité et la valeur prédictive positive au détriment de la sensibilité. Les algorithmes les plus performants pour l'identification des cas de TSA reposent sur une combinaison de sources de données, la base de données sur les demandes de remboursement des médecins étant la meilleure source. Une étude a révélé que les données sur l'éducation pourraient améliorer l'identification des cas de TSA (sensibilité accrue) chez les enfants d'âge scolaire lorsqu'elles sont combinées aux données sur les demandes de remboursement des médecins; toutefois, d'autres études incluant des sujets sans TSA sont nécessaires pour évaluer pleinement l'exactitude diagnostique de ces algorithmes. Pour ce qui est du TDAH, il n'y a pas eu suffisamment d'information pour évaluer l'incidence du nombre de codes de diagnostic ou d'autres sources de données sur l'exactitude des algorithmes.\n \n \n Conclusion\n Selon certaines données probantes, il est possible de repérer les cas de TSA et de TDAH à l'aide de données administratives; toutefois, il existe peu d'études qui évaluent la capacité des algorithmes à établir une distinction fiable entre les sujets qui présentent le trouble étudié et les sujets qui ne le présentent pas. Il n'y a aucune donnée probante sur le TSAF. Des études de qualité méthodologique supérieure sont nécessaires pour comprendre tout le potentiel de l'utilisation des données administratives pour l'identification de ces troubles.\n","PeriodicalId":371766,"journal":{"name":"Promotion de la santé et prévention des maladies chroniques au Canada","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exactitude des algorithmes des bases de données administratives pour la détermination des cas de trouble du spectre de l’autisme, de trouble du déficit de l’attention/hyperactivité et de trouble du spectre de l’alcoolisation fœtale : revue systématique\",\"authors\":\"S. O’Donnell, Sarah Palmeter, Meghan Laverty, C. Lagacé\",\"doi\":\"10.24095/hpcdp.42.9.01f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Introduction\\n L'objectif de cette revue systématique était d'évaluer la validité des algorithmes des bases de données administratives utilisés pour repérer les cas de trouble du spectre de l'autisme (TSA), de trouble du déficit de l'attention/hyperactivité (TDAH) et de trouble du spectre de l'alcoolisation fœtale (TSAF).\\n \\n \\n Méthodologie\\n L'équipe de recherche a interrogé les systèmes MEDLINE, Embase, Global Health et PsycInfo afin de trouver des études, publiées en anglais ou en français entre 1995 et 2021, qui valident des algorithmes servant à recenser les cas de TSA, de TDAH et de TSAF dans les bases de données administratives. L'équipe de recherche a également consulté la littérature grise et les listes de références des études incluses. Deux évaluatrices ont procédé, de manière indépendante, à la sélection de la littérature, à l'extraction de l'information pertinente, à l'évaluation de la qualité des rapports, au risque de biais et à l'applicabilité et elles ont réalisé une synthèse qualitative des données probantes. PROSPERO CRD42019146941.\\n \\n \\n Résultats\\n Parmi les 48 articles évalués en texte intégral, 14 ont été inclus dans la revue. Aucune étude n'a été trouvée pour le TSAF. Malgré les sources de biais possibles et la grande hétérogénéité des études, les résultats donnent à penser que l'augmentation du nombre de codes de diagnostic de TSA que requiert une seule source de données augmente la spécificité et la valeur prédictive positive au détriment de la sensibilité. Les algorithmes les plus performants pour l'identification des cas de TSA reposent sur une combinaison de sources de données, la base de données sur les demandes de remboursement des médecins étant la meilleure source. Une étude a révélé que les données sur l'éducation pourraient améliorer l'identification des cas de TSA (sensibilité accrue) chez les enfants d'âge scolaire lorsqu'elles sont combinées aux données sur les demandes de remboursement des médecins; toutefois, d'autres études incluant des sujets sans TSA sont nécessaires pour évaluer pleinement l'exactitude diagnostique de ces algorithmes. Pour ce qui est du TDAH, il n'y a pas eu suffisamment d'information pour évaluer l'incidence du nombre de codes de diagnostic ou d'autres sources de données sur l'exactitude des algorithmes.\\n \\n \\n Conclusion\\n Selon certaines données probantes, il est possible de repérer les cas de TSA et de TDAH à l'aide de données administratives; toutefois, il existe peu d'études qui évaluent la capacité des algorithmes à établir une distinction fiable entre les sujets qui présentent le trouble étudié et les sujets qui ne le présentent pas. Il n'y a aucune donnée probante sur le TSAF. Des études de qualité méthodologique supérieure sont nécessaires pour comprendre tout le potentiel de l'utilisation des données administratives pour l'identification de ces troubles.\\n\",\"PeriodicalId\":371766,\"journal\":{\"name\":\"Promotion de la santé et prévention des maladies chroniques au Canada\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promotion de la santé et prévention des maladies chroniques au Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24095/hpcdp.42.9.01f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promotion de la santé et prévention des maladies chroniques au Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24095/hpcdp.42.9.01f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

系统介绍,这次审查的目的是评估算法是否有效的数据库,用于查明行政案件频谱紊乱自闭症(TSA)的赤字的浑浊,注意力/多动症(adhd)的频谱紊乱和胎儿酒精紊乱)。系统方法论研究团队采访了基座、全球卫生和MEDLINE PsycInfo公布的研究,以便找到英语或法语1995 - 2021年间,验证算法,用于查明的孤独症病例,adhd和行政数据库中的紊乱。研究小组还查阅了灰色文献和纳入研究的参考列表。两位评审员独立选择文献,提取相关信息,评估报告质量、偏倚风险和适用性,并对证据进行定性综合。斯比罗CRD42019146941。结果在全文评估的48篇文章中,14篇被纳入综述。目前还没有关于TSAF的研究。尽管存在潜在的偏差来源和研究的巨大异质性,但结果表明,单一数据来源所需的asd诊断代码数量的增加增加了特异性和阳性预测价值,而牺牲了敏感性。识别asd病例的最有效算法是基于多种数据源的组合,其中医生索赔数据库是最好的数据源。一项研究表明,教育数据与医生索赔数据相结合,可以改善学龄儿童asd病例的识别(增加敏感性);然而,需要进一步的研究,包括非asd受试者,以充分评估这些算法的诊断准确性。对于多动症,没有足够的信息来评估诊断代码数量或其他数据来源对算法准确性的影响。结论有证据表明,asd和adhd病例可以通过行政数据进行识别;然而,很少有研究评估算法的能力,以可靠地区分有研究障碍和没有研究障碍的受试者。没有关于TSAF的证据。需要进行高方法学质量的研究,以充分了解利用行政数据查明这些疾病的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exactitude des algorithmes des bases de données administratives pour la détermination des cas de trouble du spectre de l’autisme, de trouble du déficit de l’attention/hyperactivité et de trouble du spectre de l’alcoolisation fœtale : revue systématique
Introduction L'objectif de cette revue systématique était d'évaluer la validité des algorithmes des bases de données administratives utilisés pour repérer les cas de trouble du spectre de l'autisme (TSA), de trouble du déficit de l'attention/hyperactivité (TDAH) et de trouble du spectre de l'alcoolisation fœtale (TSAF). Méthodologie L'équipe de recherche a interrogé les systèmes MEDLINE, Embase, Global Health et PsycInfo afin de trouver des études, publiées en anglais ou en français entre 1995 et 2021, qui valident des algorithmes servant à recenser les cas de TSA, de TDAH et de TSAF dans les bases de données administratives. L'équipe de recherche a également consulté la littérature grise et les listes de références des études incluses. Deux évaluatrices ont procédé, de manière indépendante, à la sélection de la littérature, à l'extraction de l'information pertinente, à l'évaluation de la qualité des rapports, au risque de biais et à l'applicabilité et elles ont réalisé une synthèse qualitative des données probantes. PROSPERO CRD42019146941. Résultats Parmi les 48 articles évalués en texte intégral, 14 ont été inclus dans la revue. Aucune étude n'a été trouvée pour le TSAF. Malgré les sources de biais possibles et la grande hétérogénéité des études, les résultats donnent à penser que l'augmentation du nombre de codes de diagnostic de TSA que requiert une seule source de données augmente la spécificité et la valeur prédictive positive au détriment de la sensibilité. Les algorithmes les plus performants pour l'identification des cas de TSA reposent sur une combinaison de sources de données, la base de données sur les demandes de remboursement des médecins étant la meilleure source. Une étude a révélé que les données sur l'éducation pourraient améliorer l'identification des cas de TSA (sensibilité accrue) chez les enfants d'âge scolaire lorsqu'elles sont combinées aux données sur les demandes de remboursement des médecins; toutefois, d'autres études incluant des sujets sans TSA sont nécessaires pour évaluer pleinement l'exactitude diagnostique de ces algorithmes. Pour ce qui est du TDAH, il n'y a pas eu suffisamment d'information pour évaluer l'incidence du nombre de codes de diagnostic ou d'autres sources de données sur l'exactitude des algorithmes. Conclusion Selon certaines données probantes, il est possible de repérer les cas de TSA et de TDAH à l'aide de données administratives; toutefois, il existe peu d'études qui évaluent la capacité des algorithmes à établir une distinction fiable entre les sujets qui présentent le trouble étudié et les sujets qui ne le présentent pas. Il n'y a aucune donnée probante sur le TSAF. Des études de qualité méthodologique supérieure sont nécessaires pour comprendre tout le potentiel de l'utilisation des données administratives pour l'identification de ces troubles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信