使用相似度检索的基于案例的分类

I. Jurisica, J. Glasgow
{"title":"使用相似度检索的基于案例的分类","authors":"I. Jurisica, J. Glasgow","doi":"10.1109/TAI.1996.560735","DOIUrl":null,"url":null,"abstract":"Classification involves associating instances with particular classes by maximizing intra-class similarities and minimizing inter-class similarities. The paper presents a novel approach to case-based classification. The algorithm is based on a notion of similarity assessment and was developed for supporting flexible retrieval of relevant information. Validity of the proposed approach is tested on real world domains, and the system's performance is compared to that of other machine learning algorithms.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Case-based classification using similarity-based retrieval\",\"authors\":\"I. Jurisica, J. Glasgow\",\"doi\":\"10.1109/TAI.1996.560735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification involves associating instances with particular classes by maximizing intra-class similarities and minimizing inter-class similarities. The paper presents a novel approach to case-based classification. The algorithm is based on a notion of similarity assessment and was developed for supporting flexible retrieval of relevant information. Validity of the proposed approach is tested on real world domains, and the system's performance is compared to that of other machine learning algorithms.\",\"PeriodicalId\":209171,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1996.560735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

分类涉及通过最大化类内相似性和最小化类间相似性将实例与特定类关联起来。本文提出了一种基于案例的分类方法。该算法基于相似性评估的概念,并为支持相关信息的灵活检索而开发。在实际领域中测试了该方法的有效性,并将系统性能与其他机器学习算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case-based classification using similarity-based retrieval
Classification involves associating instances with particular classes by maximizing intra-class similarities and minimizing inter-class similarities. The paper presents a novel approach to case-based classification. The algorithm is based on a notion of similarity assessment and was developed for supporting flexible retrieval of relevant information. Validity of the proposed approach is tested on real world domains, and the system's performance is compared to that of other machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信