{"title":"带有嵌入式微流控网络的大块钛微针用于经皮给药","authors":"E. R. Parker, M. Rao, K. Turner, N. MacDonald","doi":"10.1109/MEMSYS.2006.1627845","DOIUrl":null,"url":null,"abstract":"Recent developments have allowed for the bulk micromachining of titanium for MEMS applications. Biomedical microsystems in particular can benefit from the high fracture toughness and biocompatibility associated with titanium. This paper reports on the design and fabrication of an in-plane, bulk titanium microneedle device using multilayer lamination. Thin titanium foils are patterned, etched, and bonded together to form microneedle arrays. A microfluidic network embedded within these arrays allows for controlled fluid delivery through the device. This fabrication approach offers a novel, robust platform for transdermal drug delivery applications.","PeriodicalId":250831,"journal":{"name":"19th IEEE International Conference on Micro Electro Mechanical Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bulk Titanium Microneedles with Embedded Microfluidic Networks for Transdermal Drug Delivery\",\"authors\":\"E. R. Parker, M. Rao, K. Turner, N. MacDonald\",\"doi\":\"10.1109/MEMSYS.2006.1627845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments have allowed for the bulk micromachining of titanium for MEMS applications. Biomedical microsystems in particular can benefit from the high fracture toughness and biocompatibility associated with titanium. This paper reports on the design and fabrication of an in-plane, bulk titanium microneedle device using multilayer lamination. Thin titanium foils are patterned, etched, and bonded together to form microneedle arrays. A microfluidic network embedded within these arrays allows for controlled fluid delivery through the device. This fabrication approach offers a novel, robust platform for transdermal drug delivery applications.\",\"PeriodicalId\":250831,\"journal\":{\"name\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2006.1627845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2006.1627845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bulk Titanium Microneedles with Embedded Microfluidic Networks for Transdermal Drug Delivery
Recent developments have allowed for the bulk micromachining of titanium for MEMS applications. Biomedical microsystems in particular can benefit from the high fracture toughness and biocompatibility associated with titanium. This paper reports on the design and fabrication of an in-plane, bulk titanium microneedle device using multilayer lamination. Thin titanium foils are patterned, etched, and bonded together to form microneedle arrays. A microfluidic network embedded within these arrays allows for controlled fluid delivery through the device. This fabrication approach offers a novel, robust platform for transdermal drug delivery applications.