Filipe Correia Belfort, I. F. S. D. Silva, A. C. Silva, Anselmo Cardoso de Paiva
{"title":"利用卷积神经网络级联检测组织病理学图像中的阴茎癌","authors":"Filipe Correia Belfort, I. F. S. D. Silva, A. C. Silva, Anselmo Cardoso de Paiva","doi":"10.5753/sbcas.2023.229942","DOIUrl":null,"url":null,"abstract":"O câncer peniano tem alta incidência em países em desenvolvimento, incluindo o Brasil, onde o estado do Maranhão apresenta a maior taxa mundial de ocorrência. Essa patologia, quando muito agravada, pode levar a uma cirurgia invasiva com consequências físicas e psicológicas, tornando importante diagnosticá-la precocemente. A análise histopatológica é um exame indicado para o diagnóstico, mas é demorado e complexo. Métodos computacionais, como as redes neurais convolucionais (CNNs), podem ajudar na obtenção de um diagnóstico mais rápido e preciso. Portanto, este trabalho propõe um método para a classificação do câncer peniano em imagens histopatológicas usando CNNs em cascata e o mecanismo Soft-Attention, que atribui mais peso às características relevantes das imagens. Experimentos foram feitos com uma base contendo 194 exemplares nas ampliações de 40× e 100×. Como resultado final, o método obtém 93% e 90% de acurácia, respectivamente, para a detecção do câncer nas ampliações de 40× e 100×.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecção de Câncer Peniano em Imagens Histopatológicas usando Redes Neurais Convolucionais em Cascata\",\"authors\":\"Filipe Correia Belfort, I. F. S. D. Silva, A. C. Silva, Anselmo Cardoso de Paiva\",\"doi\":\"10.5753/sbcas.2023.229942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O câncer peniano tem alta incidência em países em desenvolvimento, incluindo o Brasil, onde o estado do Maranhão apresenta a maior taxa mundial de ocorrência. Essa patologia, quando muito agravada, pode levar a uma cirurgia invasiva com consequências físicas e psicológicas, tornando importante diagnosticá-la precocemente. A análise histopatológica é um exame indicado para o diagnóstico, mas é demorado e complexo. Métodos computacionais, como as redes neurais convolucionais (CNNs), podem ajudar na obtenção de um diagnóstico mais rápido e preciso. Portanto, este trabalho propõe um método para a classificação do câncer peniano em imagens histopatológicas usando CNNs em cascata e o mecanismo Soft-Attention, que atribui mais peso às características relevantes das imagens. Experimentos foram feitos com uma base contendo 194 exemplares nas ampliações de 40× e 100×. Como resultado final, o método obtém 93% e 90% de acurácia, respectivamente, para a detecção do câncer nas ampliações de 40× e 100×.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecção de Câncer Peniano em Imagens Histopatológicas usando Redes Neurais Convolucionais em Cascata
O câncer peniano tem alta incidência em países em desenvolvimento, incluindo o Brasil, onde o estado do Maranhão apresenta a maior taxa mundial de ocorrência. Essa patologia, quando muito agravada, pode levar a uma cirurgia invasiva com consequências físicas e psicológicas, tornando importante diagnosticá-la precocemente. A análise histopatológica é um exame indicado para o diagnóstico, mas é demorado e complexo. Métodos computacionais, como as redes neurais convolucionais (CNNs), podem ajudar na obtenção de um diagnóstico mais rápido e preciso. Portanto, este trabalho propõe um método para a classificação do câncer peniano em imagens histopatológicas usando CNNs em cascata e o mecanismo Soft-Attention, que atribui mais peso às características relevantes das imagens. Experimentos foram feitos com uma base contendo 194 exemplares nas ampliações de 40× e 100×. Como resultado final, o método obtém 93% e 90% de acurácia, respectivamente, para a detecção do câncer nas ampliações de 40× e 100×.