Jiang Li, Xiaojuan Ban, Guang Yang, Yitong Li, Yu Wang
{"title":"实时人体动作识别使用深度运动地图和卷积神经网络","authors":"Jiang Li, Xiaojuan Ban, Guang Yang, Yitong Li, Yu Wang","doi":"10.1504/IJHPCN.2016.10011433","DOIUrl":null,"url":null,"abstract":"This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.","PeriodicalId":384857,"journal":{"name":"International Journal of High Performance Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time human action recognition using depth motion maps and convolutional neural networks\",\"authors\":\"Jiang Li, Xiaojuan Ban, Guang Yang, Yitong Li, Yu Wang\",\"doi\":\"10.1504/IJHPCN.2016.10011433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.\",\"PeriodicalId\":384857,\"journal\":{\"name\":\"International Journal of High Performance Computing and Networking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJHPCN.2016.10011433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJHPCN.2016.10011433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time human action recognition using depth motion maps and convolutional neural networks
This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.