基于变压器模型的船舶轨迹预测

Kaihang Kang, Chuang Zhang, Chen Guo
{"title":"基于变压器模型的船舶轨迹预测","authors":"Kaihang Kang, Chuang Zhang, Chen Guo","doi":"10.1109/DOCS55193.2022.9967723","DOIUrl":null,"url":null,"abstract":"In view of the increasingly complex maritime traffic situation, in order to meet the demand of ship trajectory prediction accuracy, based on the large amount of ship trajectory data contained in the AIS(Automatic Identification System) and the encoder decoder construction mechanism of the transformer model, a transformer model is proposed to decode with the full connection layer instead of the decoder. According to the existing ship trajectory data, the model is trained to predict the future ship trajectory. The experimental results show that the error between the predicted trajectory information and the real trajectory information is small, which proves the effectiveness of the model.","PeriodicalId":348545,"journal":{"name":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ship trajectory prediction based on transformer model\",\"authors\":\"Kaihang Kang, Chuang Zhang, Chen Guo\",\"doi\":\"10.1109/DOCS55193.2022.9967723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the increasingly complex maritime traffic situation, in order to meet the demand of ship trajectory prediction accuracy, based on the large amount of ship trajectory data contained in the AIS(Automatic Identification System) and the encoder decoder construction mechanism of the transformer model, a transformer model is proposed to decode with the full connection layer instead of the decoder. According to the existing ship trajectory data, the model is trained to predict the future ship trajectory. The experimental results show that the error between the predicted trajectory information and the real trajectory information is small, which proves the effectiveness of the model.\",\"PeriodicalId\":348545,\"journal\":{\"name\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DOCS55193.2022.9967723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DOCS55193.2022.9967723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对日益复杂的海上交通形势,为了满足船舶轨迹预测精度的需求,基于AIS(自动识别系统)中包含的大量船舶轨迹数据,结合变压器模型的编解码器构造机制,提出了一种用全连接层代替解码器进行解码的变压器模型。根据现有的船舶轨迹数据,对模型进行训练,预测未来的船舶轨迹。实验结果表明,预测的弹道信息与实际弹道信息误差较小,证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship trajectory prediction based on transformer model
In view of the increasingly complex maritime traffic situation, in order to meet the demand of ship trajectory prediction accuracy, based on the large amount of ship trajectory data contained in the AIS(Automatic Identification System) and the encoder decoder construction mechanism of the transformer model, a transformer model is proposed to decode with the full connection layer instead of the decoder. According to the existing ship trajectory data, the model is trained to predict the future ship trajectory. The experimental results show that the error between the predicted trajectory information and the real trajectory information is small, which proves the effectiveness of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信