隐马尔可夫状态下层次Dirichlet过程的进化聚类

Tianbing Xu, Zhongfei Zhang, Philip S. Yu, Bo Long
{"title":"隐马尔可夫状态下层次Dirichlet过程的进化聚类","authors":"Tianbing Xu, Zhongfei Zhang, Philip S. Yu, Bo Long","doi":"10.1109/ICDM.2008.24","DOIUrl":null,"url":null,"abstract":"This paper studies evolutionary clustering, which is a recently hot topic with many important applications, noticeably in social network analysis. In this paper, based on the recent literature on Hierarchical Dirichlet Process (HDP) and Hidden Markov Model (HMM), we have developed a statistical model HDP-HTM that combines HDP with a Hierarchical Transition Matrix (HTM) based on the proposed Infinite Hierarchical Hidden Markov State model (iH2MS) as an effective solution to this problem. The HDP-HTM model substantially advances the literature on evolutionary clustering in the sense that not only it performs better than the existing literature, but more importantly it is capable of automatically learning the cluster numbers and structures and at the same time explicitly addresses the correspondence issue during the evolution. Extensive evaluations have demonstrated the effectiveness and promise of this solution against the state-of-the-art literature.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State\",\"authors\":\"Tianbing Xu, Zhongfei Zhang, Philip S. Yu, Bo Long\",\"doi\":\"10.1109/ICDM.2008.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies evolutionary clustering, which is a recently hot topic with many important applications, noticeably in social network analysis. In this paper, based on the recent literature on Hierarchical Dirichlet Process (HDP) and Hidden Markov Model (HMM), we have developed a statistical model HDP-HTM that combines HDP with a Hierarchical Transition Matrix (HTM) based on the proposed Infinite Hierarchical Hidden Markov State model (iH2MS) as an effective solution to this problem. The HDP-HTM model substantially advances the literature on evolutionary clustering in the sense that not only it performs better than the existing literature, but more importantly it is capable of automatically learning the cluster numbers and structures and at the same time explicitly addresses the correspondence issue during the evolution. Extensive evaluations have demonstrated the effectiveness and promise of this solution against the state-of-the-art literature.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

进化聚类是近年来的一个研究热点,在社会网络分析中有许多重要的应用。本文在分析了近年来关于层次狄利克雷过程(HDP)和隐马尔可夫模型(HMM)的相关文献的基础上,基于所提出的无限层次隐马尔可夫状态模型(iH2MS),建立了一个将HDP与层次转移矩阵(HTM)相结合的统计模型HDP-HTM,作为该问题的有效解决方案。HDP-HTM模型在进化聚类的研究上有了很大的进步,不仅性能优于现有的文献,更重要的是它能够自动学习聚类的数量和结构,同时明确地解决了进化过程中的对应问题。广泛的评估已经证明了这种解决方案的有效性和前景,以对抗最先进的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State
This paper studies evolutionary clustering, which is a recently hot topic with many important applications, noticeably in social network analysis. In this paper, based on the recent literature on Hierarchical Dirichlet Process (HDP) and Hidden Markov Model (HMM), we have developed a statistical model HDP-HTM that combines HDP with a Hierarchical Transition Matrix (HTM) based on the proposed Infinite Hierarchical Hidden Markov State model (iH2MS) as an effective solution to this problem. The HDP-HTM model substantially advances the literature on evolutionary clustering in the sense that not only it performs better than the existing literature, but more importantly it is capable of automatically learning the cluster numbers and structures and at the same time explicitly addresses the correspondence issue during the evolution. Extensive evaluations have demonstrated the effectiveness and promise of this solution against the state-of-the-art literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信