促进在线群机器人的原创性

Amine M. Boumaza
{"title":"促进在线群机器人的原创性","authors":"Amine M. Boumaza","doi":"10.1145/3583133.3590563","DOIUrl":null,"url":null,"abstract":"We address the problem of promoting diversity in online embodied evolution of heterogeneous robot swarms. We argue that it is not easy to adapt existing diversity algorithms from traditional evolutionary robotics to this context and describe a method in which selection is based on originality and which allows a swarm of heterogeneous agents to maintain a high degree of diversity in behavioral space. We also describe a behavioral distance measure that compares behaviors in the same conditions to provide reliable measurements in online and distributed contexts. We test the selection scheme on an open-ended survival task and show its effectiveness. Without any other pressure besides that of the environment, the evolved strategies tend toward simplicity, exploiting the existing affordances. An additional external pressure enables the emergence of rich and diverse behaviors.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting Originality in Online Swarm Robotics\",\"authors\":\"Amine M. Boumaza\",\"doi\":\"10.1145/3583133.3590563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of promoting diversity in online embodied evolution of heterogeneous robot swarms. We argue that it is not easy to adapt existing diversity algorithms from traditional evolutionary robotics to this context and describe a method in which selection is based on originality and which allows a swarm of heterogeneous agents to maintain a high degree of diversity in behavioral space. We also describe a behavioral distance measure that compares behaviors in the same conditions to provide reliable measurements in online and distributed contexts. We test the selection scheme on an open-ended survival task and show its effectiveness. Without any other pressure besides that of the environment, the evolved strategies tend toward simplicity, exploiting the existing affordances. An additional external pressure enables the emergence of rich and diverse behaviors.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了促进异构机器人群体在线具身进化多样性的问题。我们认为,将传统进化机器人的现有多样性算法适应这种情况并不容易,并描述了一种基于独创性的选择方法,该方法允许一群异质代理在行为空间中保持高度的多样性。我们还描述了一种行为距离度量,用于比较相同条件下的行为,从而在在线和分布式环境中提供可靠的度量。我们在一个开放式的生存任务中测试了这种选择方案,并证明了它的有效性。除了环境的压力外,没有其他压力,进化的策略倾向于简单,利用现有的功能。额外的外部压力使丰富多样的行为得以出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promoting Originality in Online Swarm Robotics
We address the problem of promoting diversity in online embodied evolution of heterogeneous robot swarms. We argue that it is not easy to adapt existing diversity algorithms from traditional evolutionary robotics to this context and describe a method in which selection is based on originality and which allows a swarm of heterogeneous agents to maintain a high degree of diversity in behavioral space. We also describe a behavioral distance measure that compares behaviors in the same conditions to provide reliable measurements in online and distributed contexts. We test the selection scheme on an open-ended survival task and show its effectiveness. Without any other pressure besides that of the environment, the evolved strategies tend toward simplicity, exploiting the existing affordances. An additional external pressure enables the emergence of rich and diverse behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信