计算图的破裂度

Fengwei Li, Xueliang Li
{"title":"计算图的破裂度","authors":"Fengwei Li, Xueliang Li","doi":"10.1109/ISPAN.2004.1300507","DOIUrl":null,"url":null,"abstract":"The rupture degree of a noncomplete connected graph G is defined by r(G) = max{/spl omega/(G - X) - |X| - m(G - X) : X /spl sub/ V(G), /spl omega/(G - X) /spl ges/ 2}, where /spl omega/(G - X) denotes the number of components in the graph G - X. For a complete graph K/sub n/, we define r(K/sub n/) = 1 - n. This parameter can be used to measure the vulnerability of a graph. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. In this paper, we prove that the problem of computing the rupture degree of a graph is NP-complete. We obtain the rupture degree of the Cartesian product of some special graphs and also give the exact values or bounds for the rupture degrees of Harary graphs.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Computing the rupture degrees of graphs\",\"authors\":\"Fengwei Li, Xueliang Li\",\"doi\":\"10.1109/ISPAN.2004.1300507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rupture degree of a noncomplete connected graph G is defined by r(G) = max{/spl omega/(G - X) - |X| - m(G - X) : X /spl sub/ V(G), /spl omega/(G - X) /spl ges/ 2}, where /spl omega/(G - X) denotes the number of components in the graph G - X. For a complete graph K/sub n/, we define r(K/sub n/) = 1 - n. This parameter can be used to measure the vulnerability of a graph. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. In this paper, we prove that the problem of computing the rupture degree of a graph is NP-complete. We obtain the rupture degree of the Cartesian product of some special graphs and also give the exact values or bounds for the rupture degrees of Harary graphs.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

非完全连通图G的破裂程度定义为r(G) = max{/spl omega/(G - X) - |X| - m(G - X): X /spl sub/ V(G), /spl omega/(G - X) /spl ges/ 2},其中/spl omega/(G - X)表示图G - X中的分量数。对于完全图K/sub n/,我们定义r(K/sub n/) = 1 - n,这个参数可以用来衡量图的易碎性。在某种程度上,它代表了破坏网络的工作量和网络破坏的严重程度之间的权衡。本文证明了图的破裂度计算问题是np完全的。我们得到了一些特殊图的笛卡尔积的破裂度,并给出了一些特殊图的破裂度的精确值或界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the rupture degrees of graphs
The rupture degree of a noncomplete connected graph G is defined by r(G) = max{/spl omega/(G - X) - |X| - m(G - X) : X /spl sub/ V(G), /spl omega/(G - X) /spl ges/ 2}, where /spl omega/(G - X) denotes the number of components in the graph G - X. For a complete graph K/sub n/, we define r(K/sub n/) = 1 - n. This parameter can be used to measure the vulnerability of a graph. To some extent, it represents a trade-off between the amount of work done to damage the network and how badly the network is damaged. In this paper, we prove that the problem of computing the rupture degree of a graph is NP-complete. We obtain the rupture degree of the Cartesian product of some special graphs and also give the exact values or bounds for the rupture degrees of Harary graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信