光刻后分析中扩散舍入的研究

Puneet Gupta, A. Kahng, Youngmin Kim, Saumil Shah, D. Sylvester
{"title":"光刻后分析中扩散舍入的研究","authors":"Puneet Gupta, A. Kahng, Youngmin Kim, Saumil Shah, D. Sylvester","doi":"10.1109/ASPDAC.2008.4483998","DOIUrl":null,"url":null,"abstract":"Due to aggressive scaling of device feature size to improve circuit performance in the sub-wavelength lithography regime, both diffusion and poly gate shapes are no longer rectilinear. Diffusion rounding occurs most notably where the diffusion shapes are not perfectly rectangular, including common L and T-shaped diffusion layouts to connect to power rails. This paper investigates the impact of the non-rectilinear shape of diffusion (i.e., sloped diffusion or diffusion rounding) on circuit performance (delay and leakage). Simple weighting function models for Ionmiddot and Ioff to account for the diffusion rounding effects are proposed, and compared with TCAD simulation. Our experiments show that diffusion rounding has an asymmetric characteristic for Ioff due to the differing significance of source/drain junctions on device threshold voltage. Therefore, we can model Ionmiddot and Ioff as a function of slope angle and direction. The proposed models match well with TCAD simulation results, with less than 2% and 6% error in Ionmiddot and Ioff, respectively.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Investigation of diffusion rounding for post-lithography analysis\",\"authors\":\"Puneet Gupta, A. Kahng, Youngmin Kim, Saumil Shah, D. Sylvester\",\"doi\":\"10.1109/ASPDAC.2008.4483998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to aggressive scaling of device feature size to improve circuit performance in the sub-wavelength lithography regime, both diffusion and poly gate shapes are no longer rectilinear. Diffusion rounding occurs most notably where the diffusion shapes are not perfectly rectangular, including common L and T-shaped diffusion layouts to connect to power rails. This paper investigates the impact of the non-rectilinear shape of diffusion (i.e., sloped diffusion or diffusion rounding) on circuit performance (delay and leakage). Simple weighting function models for Ionmiddot and Ioff to account for the diffusion rounding effects are proposed, and compared with TCAD simulation. Our experiments show that diffusion rounding has an asymmetric characteristic for Ioff due to the differing significance of source/drain junctions on device threshold voltage. Therefore, we can model Ionmiddot and Ioff as a function of slope angle and direction. The proposed models match well with TCAD simulation results, with less than 2% and 6% error in Ionmiddot and Ioff, respectively.\",\"PeriodicalId\":277556,\"journal\":{\"name\":\"2008 Asia and South Pacific Design Automation Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2008.4483998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4483998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

由于在亚波长光刻系统中,为了提高电路性能,器件特征尺寸的积极缩放,扩散和多栅极的形状都不再是直线的。扩散舍入最明显地发生在扩散形状不是完美矩形的地方,包括连接到电源轨道的常见L形和t形扩散布局。本文研究了扩散的非直线形状(即斜扩散或扩散舍入)对电路性能(延迟和漏电)的影响。提出了考虑扩散舍入效应的Ionmiddot和Ioff的简单加权函数模型,并与TCAD仿真进行了比较。我们的实验表明,由于源极/漏极结对器件阈值电压的不同意义,扩散舍入具有不对称的off特性。因此,我们可以将Ionmiddot和Ioff建模为斜率和方向的函数。所提出的模型与TCAD仿真结果吻合良好,Ionmiddot和Ioff的误差分别小于2%和6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of diffusion rounding for post-lithography analysis
Due to aggressive scaling of device feature size to improve circuit performance in the sub-wavelength lithography regime, both diffusion and poly gate shapes are no longer rectilinear. Diffusion rounding occurs most notably where the diffusion shapes are not perfectly rectangular, including common L and T-shaped diffusion layouts to connect to power rails. This paper investigates the impact of the non-rectilinear shape of diffusion (i.e., sloped diffusion or diffusion rounding) on circuit performance (delay and leakage). Simple weighting function models for Ionmiddot and Ioff to account for the diffusion rounding effects are proposed, and compared with TCAD simulation. Our experiments show that diffusion rounding has an asymmetric characteristic for Ioff due to the differing significance of source/drain junctions on device threshold voltage. Therefore, we can model Ionmiddot and Ioff as a function of slope angle and direction. The proposed models match well with TCAD simulation results, with less than 2% and 6% error in Ionmiddot and Ioff, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信