可行闭包性质的复杂性理论

M. Ogiwara, L. Hemachandra
{"title":"可行闭包性质的复杂性理论","authors":"M. Ogiwara, L. Hemachandra","doi":"10.1109/SCT.1991.160240","DOIUrl":null,"url":null,"abstract":"The authors propose and develop a complexity theory of feasible closure properties. For each of the classes Hash P, SpanP, OptP, and MidP, they establish complete characterizations-in terms of complexity class collapses-of the conditions under which the class has all feasible closure properties. In particular, Hash P is P-closed if and only if PP=UP; SpanP is P-closed if and only if R-MidP is P-closed if and only if P/sup PP/=NP; and OptP is P-closed if and only if NP=co-NP. Furthermore, for each of these classes, the authors show natural operations-such as subtraction and division-to be hard closure properties, in the sense that if a class is closed under one of these, then it has all feasible closure properties. They also study potentially intermediate closure properties for Hash P. These properties-maximum, minimum, median, and decrement-seem neither to be possessed by Hash P nor to be Hash P-hard.<<ETX>>","PeriodicalId":158682,"journal":{"name":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A complexity theory for feasible closure properties\",\"authors\":\"M. Ogiwara, L. Hemachandra\",\"doi\":\"10.1109/SCT.1991.160240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose and develop a complexity theory of feasible closure properties. For each of the classes Hash P, SpanP, OptP, and MidP, they establish complete characterizations-in terms of complexity class collapses-of the conditions under which the class has all feasible closure properties. In particular, Hash P is P-closed if and only if PP=UP; SpanP is P-closed if and only if R-MidP is P-closed if and only if P/sup PP/=NP; and OptP is P-closed if and only if NP=co-NP. Furthermore, for each of these classes, the authors show natural operations-such as subtraction and division-to be hard closure properties, in the sense that if a class is closed under one of these, then it has all feasible closure properties. They also study potentially intermediate closure properties for Hash P. These properties-maximum, minimum, median, and decrement-seem neither to be possessed by Hash P nor to be Hash P-hard.<<ETX>>\",\"PeriodicalId\":158682,\"journal\":{\"name\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCT.1991.160240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1991.160240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

作者提出并发展了可行闭包性质的复杂性理论。对于每个类Hash P、SpanP、OptP和MidP,它们建立了完整的特征描述(就复杂性类崩溃而言),在这些条件下,类具有所有可行的闭包属性。特别地,哈希P是P闭的当且仅当PP=UP;SpanP是P闭的当且仅当R-MidP是P闭的当且仅当P/sup PP/=NP;且OptP是p闭的当且仅当NP=co-NP。此外,对于这些类中的每一个,作者都证明了自然操作(如减法和除法)是硬闭包属性,也就是说,如果一个类在其中一个闭包属性下闭包,那么它具有所有可行的闭包属性。他们还研究了哈希P潜在的中间闭包属性。这些属性——最大值、最小值、中值和减数——似乎既不为哈希P所拥有,也不为哈希P所困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A complexity theory for feasible closure properties
The authors propose and develop a complexity theory of feasible closure properties. For each of the classes Hash P, SpanP, OptP, and MidP, they establish complete characterizations-in terms of complexity class collapses-of the conditions under which the class has all feasible closure properties. In particular, Hash P is P-closed if and only if PP=UP; SpanP is P-closed if and only if R-MidP is P-closed if and only if P/sup PP/=NP; and OptP is P-closed if and only if NP=co-NP. Furthermore, for each of these classes, the authors show natural operations-such as subtraction and division-to be hard closure properties, in the sense that if a class is closed under one of these, then it has all feasible closure properties. They also study potentially intermediate closure properties for Hash P. These properties-maximum, minimum, median, and decrement-seem neither to be possessed by Hash P nor to be Hash P-hard.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信