气辅注塑件结构性能、成型工艺及翘曲的综合模拟

S. Chen, N. Cheng, Sheng-yan Hu
{"title":"气辅注塑件结构性能、成型工艺及翘曲的综合模拟","authors":"S. Chen, N. Cheng, Sheng-yan Hu","doi":"10.1115/imece1997-0617","DOIUrl":null,"url":null,"abstract":"\n Integrated simulations of part structural performance, processing characteristics and warpage for the gas-assisted injection molded parts were carried out using a unified CAE model. An analysis algorithm based on DKT/VRT elements superimposed with beam elements representing gas channels of various section geometry was first developed to evaluate part structural performance. During melt/gas filling stage, a mixed control-volume/finite-element/finite-difference method combined with dual-filling-parameter technique was implemented to trace the advancements of melt and gas fronts. For the prediction of secondary gas penetration, flow model of isotropic-shrinkage origin was introduced. Cooling analysis was executed utilizing cycle-averaged boundary element approach considering hollowed core geometry within gas channels. Thermal-induced residual stress was then calculated to predict part warpage. The analysis accuracy from this unified model of 2 1/2-D characteristics show reasonable accuracy when compared with molding experiment and part bending tests. The only difference between process simulation and structure/warpage analyses is that different values of equivalent diameters assigned to beam element representing gas channel should be used, respectively.","PeriodicalId":220828,"journal":{"name":"CAE and Intelligent Processing of Polymeric Materials","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Simulations of Structural Performance, Molding Process and Warpage for Gas-Assisted Injection Molded Parts\",\"authors\":\"S. Chen, N. Cheng, Sheng-yan Hu\",\"doi\":\"10.1115/imece1997-0617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Integrated simulations of part structural performance, processing characteristics and warpage for the gas-assisted injection molded parts were carried out using a unified CAE model. An analysis algorithm based on DKT/VRT elements superimposed with beam elements representing gas channels of various section geometry was first developed to evaluate part structural performance. During melt/gas filling stage, a mixed control-volume/finite-element/finite-difference method combined with dual-filling-parameter technique was implemented to trace the advancements of melt and gas fronts. For the prediction of secondary gas penetration, flow model of isotropic-shrinkage origin was introduced. Cooling analysis was executed utilizing cycle-averaged boundary element approach considering hollowed core geometry within gas channels. Thermal-induced residual stress was then calculated to predict part warpage. The analysis accuracy from this unified model of 2 1/2-D characteristics show reasonable accuracy when compared with molding experiment and part bending tests. The only difference between process simulation and structure/warpage analyses is that different values of equivalent diameters assigned to beam element representing gas channel should be used, respectively.\",\"PeriodicalId\":220828,\"journal\":{\"name\":\"CAE and Intelligent Processing of Polymeric Materials\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAE and Intelligent Processing of Polymeric Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAE and Intelligent Processing of Polymeric Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用统一的CAE模型对气辅注射成型零件的结构性能、加工特性和翘曲进行了综合仿真。提出了一种基于DKT/VRT单元与代表不同截面几何形状气体通道的梁单元叠加的分析算法,用于评估零件结构性能。在熔体/气体填充阶段,采用控制体积/有限元/有限差分混合方法,结合双填充参数技术,跟踪熔体和气体锋面的进展。为了预测二次瓦斯穿透,引入了各向同性收缩源渗流模型。利用循环平均边界元方法进行冷却分析,考虑了气通道内空心岩心的几何形状。然后计算热致残余应力来预测零件翘曲。通过与成型试验和零件弯曲试验的比较,该统一模型的分析精度是合理的。过程模拟和结构/翘曲分析之间的唯一区别是,应分别使用分配给代表气体通道的梁单元的等效直径的不同值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Simulations of Structural Performance, Molding Process and Warpage for Gas-Assisted Injection Molded Parts
Integrated simulations of part structural performance, processing characteristics and warpage for the gas-assisted injection molded parts were carried out using a unified CAE model. An analysis algorithm based on DKT/VRT elements superimposed with beam elements representing gas channels of various section geometry was first developed to evaluate part structural performance. During melt/gas filling stage, a mixed control-volume/finite-element/finite-difference method combined with dual-filling-parameter technique was implemented to trace the advancements of melt and gas fronts. For the prediction of secondary gas penetration, flow model of isotropic-shrinkage origin was introduced. Cooling analysis was executed utilizing cycle-averaged boundary element approach considering hollowed core geometry within gas channels. Thermal-induced residual stress was then calculated to predict part warpage. The analysis accuracy from this unified model of 2 1/2-D characteristics show reasonable accuracy when compared with molding experiment and part bending tests. The only difference between process simulation and structure/warpage analyses is that different values of equivalent diameters assigned to beam element representing gas channel should be used, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信