类gmd解码算法的改进

H. Tokushiga, T. Koumoto, T. Kasami
{"title":"类gmd解码算法的改进","authors":"H. Tokushiga, T. Koumoto, T. Kasami","doi":"10.1109/ISIT.2000.866694","DOIUrl":null,"url":null,"abstract":"For binary linear block codes, we introduce a multiple generalized minimum distance (GMD) decoding algorithm, where GMD-like decoding is iterated around a few appropriately selected search centers. Compared with the original GMD decoding by Forney (1966), this decoding algorithm provides better error performance by increasing the number of iterations of erasure and error correction moderately. To reduce the number of iterations, we derive new effective sufficient conditions on the optimality of decoded codewords.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improvement to GMD-like decoding algorithms\",\"authors\":\"H. Tokushiga, T. Koumoto, T. Kasami\",\"doi\":\"10.1109/ISIT.2000.866694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For binary linear block codes, we introduce a multiple generalized minimum distance (GMD) decoding algorithm, where GMD-like decoding is iterated around a few appropriately selected search centers. Compared with the original GMD decoding by Forney (1966), this decoding algorithm provides better error performance by increasing the number of iterations of erasure and error correction moderately. To reduce the number of iterations, we derive new effective sufficient conditions on the optimality of decoded codewords.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于二进制线性分组码,我们引入了一种多重广义最小距离(GMD)译码算法,其中GMD类译码围绕几个适当选择的搜索中心进行迭代。与Forney(1966)的原始GMD译码相比,该译码算法通过适度增加擦除和纠错的迭代次数,提供了更好的误码性能。为了减少迭代次数,我们导出了译码字最优性的新的有效充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improvement to GMD-like decoding algorithms
For binary linear block codes, we introduce a multiple generalized minimum distance (GMD) decoding algorithm, where GMD-like decoding is iterated around a few appropriately selected search centers. Compared with the original GMD decoding by Forney (1966), this decoding algorithm provides better error performance by increasing the number of iterations of erasure and error correction moderately. To reduce the number of iterations, we derive new effective sufficient conditions on the optimality of decoded codewords.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信