{"title":"学生成功系统:使用预测模型集合的风险分析和数据可视化","authors":"Alfred Essa, H. Ayad","doi":"10.1145/2330601.2330641","DOIUrl":null,"url":null,"abstract":"We propose a novel design of a Student Success System (S3), a holistic analytical system for identifying and treating at-risk students. S3 synthesizes several strands of risk analytics: the use of predictive models to identify academically at-risk students, the creation of data visualizations for reaching diagnostic insights, and the application of a case-based approach for managing interventions. Such a system poses numerous design, implementation, and research challenges. In this paper we discuss a core research challenge for designing early warning systems such as S3. We then propose our approach for meeting that challenge. A practical implementation of an student risk early warning system, utilizing predictive models, must meet two design criteria: a) the methodology for generating predictive models must be flexible to allow generalization from one context to another; b) the underlying mechanism of prediction should be easily interpretable by practitioners whose end goal is to design meaningful interventions on behalf of students. Our proposed solution applies an ensemble method for predictive modeling using a strategy of decomposition. Decomposition provides a flexible technique for generating and generalizing predictive models across different contexts. Decomposition into interpretable semantic units, when coupled with data visualizations and case management tools, allows practitioners, such as instructors and advisors, to build a bridge between prediction and intervention.","PeriodicalId":311750,"journal":{"name":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Student success system: risk analytics and data visualization using ensembles of predictive models\",\"authors\":\"Alfred Essa, H. Ayad\",\"doi\":\"10.1145/2330601.2330641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel design of a Student Success System (S3), a holistic analytical system for identifying and treating at-risk students. S3 synthesizes several strands of risk analytics: the use of predictive models to identify academically at-risk students, the creation of data visualizations for reaching diagnostic insights, and the application of a case-based approach for managing interventions. Such a system poses numerous design, implementation, and research challenges. In this paper we discuss a core research challenge for designing early warning systems such as S3. We then propose our approach for meeting that challenge. A practical implementation of an student risk early warning system, utilizing predictive models, must meet two design criteria: a) the methodology for generating predictive models must be flexible to allow generalization from one context to another; b) the underlying mechanism of prediction should be easily interpretable by practitioners whose end goal is to design meaningful interventions on behalf of students. Our proposed solution applies an ensemble method for predictive modeling using a strategy of decomposition. Decomposition provides a flexible technique for generating and generalizing predictive models across different contexts. Decomposition into interpretable semantic units, when coupled with data visualizations and case management tools, allows practitioners, such as instructors and advisors, to build a bridge between prediction and intervention.\",\"PeriodicalId\":311750,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2330601.2330641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2330601.2330641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Student success system: risk analytics and data visualization using ensembles of predictive models
We propose a novel design of a Student Success System (S3), a holistic analytical system for identifying and treating at-risk students. S3 synthesizes several strands of risk analytics: the use of predictive models to identify academically at-risk students, the creation of data visualizations for reaching diagnostic insights, and the application of a case-based approach for managing interventions. Such a system poses numerous design, implementation, and research challenges. In this paper we discuss a core research challenge for designing early warning systems such as S3. We then propose our approach for meeting that challenge. A practical implementation of an student risk early warning system, utilizing predictive models, must meet two design criteria: a) the methodology for generating predictive models must be flexible to allow generalization from one context to another; b) the underlying mechanism of prediction should be easily interpretable by practitioners whose end goal is to design meaningful interventions on behalf of students. Our proposed solution applies an ensemble method for predictive modeling using a strategy of decomposition. Decomposition provides a flexible technique for generating and generalizing predictive models across different contexts. Decomposition into interpretable semantic units, when coupled with data visualizations and case management tools, allows practitioners, such as instructors and advisors, to build a bridge between prediction and intervention.