利用受激辐射力增强致密激光冷却原子样品的数目

E. Donley, T. Liebisch, E. Blanshan, J. Kitching
{"title":"利用受激辐射力增强致密激光冷却原子样品的数目","authors":"E. Donley, T. Liebisch, E. Blanshan, J. Kitching","doi":"10.1109/FREQ.2010.5556359","DOIUrl":null,"url":null,"abstract":"For cold samples of laser-cooled atoms to be useful in emerging technologies such as compact atomic clocks and sensors, it is necessary to achieve small sample sizes while retaining a large number of cold atoms. Achieving large atom numbers in a small system is a major challenge for producing miniaturized laser-cooled atomic clocks, since the number of captured atoms in a vapor-cell magneto-optical trap (MOT) scales as the fourth power of the laser beam diameter [1]. This strong dependence on size is fundamentally set by the maximum spontaneous light force ħkγ/2, where ħk is the photon momentum and γ/2 is the maximum spontaneous photon scatter rate of a saturated transition of linewidth γ. We are attempting to surmount the limit imposed by spontaneous emission by using bichromatic cooling [2] — a technique that uses stimulated emission to slow the atoms. We have built a table-top experiment that uses stimulated-emission bichromatic cooling to pre-cool rubidium atoms and dramatically enhance the trappable atom number in a small MOT. The apparatus lets us test how bichromatic cooling scales with miniaturization. Here we report on our first experimental results of cooling a thermal beam of rubidium atoms down to MOT capture velocities.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"122 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number enhancement for compact laser-cooled atomic samples by use of stimulated radiation forces\",\"authors\":\"E. Donley, T. Liebisch, E. Blanshan, J. Kitching\",\"doi\":\"10.1109/FREQ.2010.5556359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For cold samples of laser-cooled atoms to be useful in emerging technologies such as compact atomic clocks and sensors, it is necessary to achieve small sample sizes while retaining a large number of cold atoms. Achieving large atom numbers in a small system is a major challenge for producing miniaturized laser-cooled atomic clocks, since the number of captured atoms in a vapor-cell magneto-optical trap (MOT) scales as the fourth power of the laser beam diameter [1]. This strong dependence on size is fundamentally set by the maximum spontaneous light force ħkγ/2, where ħk is the photon momentum and γ/2 is the maximum spontaneous photon scatter rate of a saturated transition of linewidth γ. We are attempting to surmount the limit imposed by spontaneous emission by using bichromatic cooling [2] — a technique that uses stimulated emission to slow the atoms. We have built a table-top experiment that uses stimulated-emission bichromatic cooling to pre-cool rubidium atoms and dramatically enhance the trappable atom number in a small MOT. The apparatus lets us test how bichromatic cooling scales with miniaturization. Here we report on our first experimental results of cooling a thermal beam of rubidium atoms down to MOT capture velocities.\",\"PeriodicalId\":344989,\"journal\":{\"name\":\"2010 IEEE International Frequency Control Symposium\",\"volume\":\"122 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Frequency Control Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2010.5556359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使激光冷却原子的冷样品在紧凑型原子钟和传感器等新兴技术中发挥作用,有必要在保留大量冷原子的同时实现小样本尺寸。在小型系统中实现大原子数是生产小型化激光冷却原子钟的主要挑战,因为在气相池磁光阱(MOT)中捕获的原子数是激光束直径的四次方[1]。这种对尺寸的强烈依赖基本上是由最大自发光力ħkγ/2决定的,其中ħk是光子动量,γ/2是线宽γ的饱和跃迁的最大自发光子散射率。我们正试图通过使用双色冷却技术[2]来突破自发辐射的限制。双色冷却是一种利用受激辐射来减缓原子速度的技术。我们已经建立了一个桌面实验,使用受激发射双色冷却来预冷却铷原子,并显着提高了小型MOT中的可捕获原子数。这个装置可以让我们测试双色冷却如何随着小型化而缩小。在这里,我们报告了我们的第一个实验结果,冷却铷原子的热束到MOT捕获速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number enhancement for compact laser-cooled atomic samples by use of stimulated radiation forces
For cold samples of laser-cooled atoms to be useful in emerging technologies such as compact atomic clocks and sensors, it is necessary to achieve small sample sizes while retaining a large number of cold atoms. Achieving large atom numbers in a small system is a major challenge for producing miniaturized laser-cooled atomic clocks, since the number of captured atoms in a vapor-cell magneto-optical trap (MOT) scales as the fourth power of the laser beam diameter [1]. This strong dependence on size is fundamentally set by the maximum spontaneous light force ħkγ/2, where ħk is the photon momentum and γ/2 is the maximum spontaneous photon scatter rate of a saturated transition of linewidth γ. We are attempting to surmount the limit imposed by spontaneous emission by using bichromatic cooling [2] — a technique that uses stimulated emission to slow the atoms. We have built a table-top experiment that uses stimulated-emission bichromatic cooling to pre-cool rubidium atoms and dramatically enhance the trappable atom number in a small MOT. The apparatus lets us test how bichromatic cooling scales with miniaturization. Here we report on our first experimental results of cooling a thermal beam of rubidium atoms down to MOT capture velocities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信