一种新的GARCH模型估计算法

Chenyu Gao, Ziping Zhao, D. Palomar
{"title":"一种新的GARCH模型估计算法","authors":"Chenyu Gao, Ziping Zhao, D. Palomar","doi":"10.1109/SSP53291.2023.10208065","DOIUrl":null,"url":null,"abstract":"Generalized autoregressive conditional heteroskedasticity (GARCH) is a popular model to describe the time-varying conditional volatility of a time series, which is widely used in signal processing and machine learning. In this paper, we focus on the model parameter estimation of GARCH based on the Gaussian maximum likelihood estimation method. Due to the recursively coupling nature of parameters in GARCH, the optimization problem is highly non-convex. In this paper, we propose a novel algorithm based on the block majorization-minimization algorithmic framework, which can take care of the per-block variable structures for efficient problem solving. Numerical experiments demonstrate that the proposed algorithm can achieve comparable and even better performance in terms of parameter estimation errors. More importantly, estimated parameters from our algorithm always guarantee a stationary model, which is a desirable property in time series volatility modeling.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Algorithm for GARCH Model Estimation\",\"authors\":\"Chenyu Gao, Ziping Zhao, D. Palomar\",\"doi\":\"10.1109/SSP53291.2023.10208065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized autoregressive conditional heteroskedasticity (GARCH) is a popular model to describe the time-varying conditional volatility of a time series, which is widely used in signal processing and machine learning. In this paper, we focus on the model parameter estimation of GARCH based on the Gaussian maximum likelihood estimation method. Due to the recursively coupling nature of parameters in GARCH, the optimization problem is highly non-convex. In this paper, we propose a novel algorithm based on the block majorization-minimization algorithmic framework, which can take care of the per-block variable structures for efficient problem solving. Numerical experiments demonstrate that the proposed algorithm can achieve comparable and even better performance in terms of parameter estimation errors. More importantly, estimated parameters from our algorithm always guarantee a stationary model, which is a desirable property in time series volatility modeling.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义自回归条件异方差(GARCH)是一种描述时间序列时变条件波动率的常用模型,在信号处理和机器学习中得到了广泛的应用。本文主要研究基于高斯极大似然估计方法的GARCH模型参数估计。由于GARCH中参数的递归耦合特性,优化问题是高度非凸的。在本文中,我们提出了一种基于块最大化最小化算法框架的新算法,该算法可以照顾到每个块的变量结构,从而有效地求解问题。数值实验表明,该算法在参数估计误差方面可以达到相当甚至更好的性能。更重要的是,我们的算法估计的参数总是保证平稳的模型,这是一个理想的性质,在时间序列波动率建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Algorithm for GARCH Model Estimation
Generalized autoregressive conditional heteroskedasticity (GARCH) is a popular model to describe the time-varying conditional volatility of a time series, which is widely used in signal processing and machine learning. In this paper, we focus on the model parameter estimation of GARCH based on the Gaussian maximum likelihood estimation method. Due to the recursively coupling nature of parameters in GARCH, the optimization problem is highly non-convex. In this paper, we propose a novel algorithm based on the block majorization-minimization algorithmic framework, which can take care of the per-block variable structures for efficient problem solving. Numerical experiments demonstrate that the proposed algorithm can achieve comparable and even better performance in terms of parameter estimation errors. More importantly, estimated parameters from our algorithm always guarantee a stationary model, which is a desirable property in time series volatility modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信