Bruhathi Sundarmurthy, Paraschos Koutris, J. Naughton
{"title":"利用数据分区提供近似结果","authors":"Bruhathi Sundarmurthy, Paraschos Koutris, J. Naughton","doi":"10.1145/3206333.3206337","DOIUrl":null,"url":null,"abstract":"Co-hash partitioning is a popular partitioning strategy in distributed query processing, where tables are co-located using join predicates. In this paper, we study the benefits of co-hash partitioning for obtaining approximate answers.","PeriodicalId":253916,"journal":{"name":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploiting Data Partitioning To Provide Approximate Results\",\"authors\":\"Bruhathi Sundarmurthy, Paraschos Koutris, J. Naughton\",\"doi\":\"10.1145/3206333.3206337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-hash partitioning is a popular partitioning strategy in distributed query processing, where tables are co-located using join predicates. In this paper, we study the benefits of co-hash partitioning for obtaining approximate answers.\",\"PeriodicalId\":253916,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206333.3206337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206333.3206337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Data Partitioning To Provide Approximate Results
Co-hash partitioning is a popular partitioning strategy in distributed query processing, where tables are co-located using join predicates. In this paper, we study the benefits of co-hash partitioning for obtaining approximate answers.