{"title":"预测组合的一些理论结果","authors":"F. Chan, Laurent L. Pauwels","doi":"10.2139/ssrn.2638232","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for the analysis of the theoretical properties of forecast combination, with the forecast performance being measured in terms of mean squared forecast errors (MSFE). Such a framework is useful for deriving all existing results with ease. In addition, it also provides insights into two forecast combination puzzles. Specifically, it investigates why a simple average of forecasts often outperforms forecasts from single models in terms of MSFEs, and why a more complicated weighting scheme does not always perform better than a simple average. In addition, this paper presents two new findings that are particularly relevant in practice. First, the MSFE of a forecast combination decreases as the number of models increases. Second, the conventional approach to the selection of optimal models, based on a simple comparison of MSFEs without further statistical testing, leads to a biased selection.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Some Theoretical Results on Forecast Combinations\",\"authors\":\"F. Chan, Laurent L. Pauwels\",\"doi\":\"10.2139/ssrn.2638232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework for the analysis of the theoretical properties of forecast combination, with the forecast performance being measured in terms of mean squared forecast errors (MSFE). Such a framework is useful for deriving all existing results with ease. In addition, it also provides insights into two forecast combination puzzles. Specifically, it investigates why a simple average of forecasts often outperforms forecasts from single models in terms of MSFEs, and why a more complicated weighting scheme does not always perform better than a simple average. In addition, this paper presents two new findings that are particularly relevant in practice. First, the MSFE of a forecast combination decreases as the number of models increases. Second, the conventional approach to the selection of optimal models, based on a simple comparison of MSFEs without further statistical testing, leads to a biased selection.\",\"PeriodicalId\":170198,\"journal\":{\"name\":\"ERN: Forecasting Techniques (Topic)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Forecasting Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2638232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2638232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes a framework for the analysis of the theoretical properties of forecast combination, with the forecast performance being measured in terms of mean squared forecast errors (MSFE). Such a framework is useful for deriving all existing results with ease. In addition, it also provides insights into two forecast combination puzzles. Specifically, it investigates why a simple average of forecasts often outperforms forecasts from single models in terms of MSFEs, and why a more complicated weighting scheme does not always perform better than a simple average. In addition, this paper presents two new findings that are particularly relevant in practice. First, the MSFE of a forecast combination decreases as the number of models increases. Second, the conventional approach to the selection of optimal models, based on a simple comparison of MSFEs without further statistical testing, leads to a biased selection.