低功耗垂直GaN SGT-MOSFET的优化

N. Jaiswal, V. N. Ramakrishnan, Sukhendu deb Roy
{"title":"低功耗垂直GaN SGT-MOSFET的优化","authors":"N. Jaiswal, V. N. Ramakrishnan, Sukhendu deb Roy","doi":"10.1109/WiPDAAsia49671.2020.9360257","DOIUrl":null,"url":null,"abstract":"We present a new 600 V breakdown optimized vertical GaN Split-Gate Trench power MOSFET (SGTMOSFET) device with significantly reduced specific on-resistance and lower reverse capacitance. Using TCAD numerical simulations, we demonstrate that the SGTMOSFET exhibits about 30% lower specific on-resistance and about five times reduction in the reverse capacitance when compared to a conventional TG-MOSFET with similar breakdown voltage.","PeriodicalId":432666,"journal":{"name":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of Vertical GaN SGT-MOSFET for Low Ron\",\"authors\":\"N. Jaiswal, V. N. Ramakrishnan, Sukhendu deb Roy\",\"doi\":\"10.1109/WiPDAAsia49671.2020.9360257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new 600 V breakdown optimized vertical GaN Split-Gate Trench power MOSFET (SGTMOSFET) device with significantly reduced specific on-resistance and lower reverse capacitance. Using TCAD numerical simulations, we demonstrate that the SGTMOSFET exhibits about 30% lower specific on-resistance and about five times reduction in the reverse capacitance when compared to a conventional TG-MOSFET with similar breakdown voltage.\",\"PeriodicalId\":432666,\"journal\":{\"name\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiPDAAsia49671.2020.9360257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiPDAAsia49671.2020.9360257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的600 V击穿优化的垂直GaN分栅沟槽功率MOSFET (SGTMOSFET)器件,具有显着降低的比导通电阻和更低的反向电容。使用TCAD数值模拟,我们证明了与具有相似击穿电压的传统TG-MOSFET相比,SGTMOSFET的比导通电阻降低了约30%,反向电容降低了约5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Vertical GaN SGT-MOSFET for Low Ron
We present a new 600 V breakdown optimized vertical GaN Split-Gate Trench power MOSFET (SGTMOSFET) device with significantly reduced specific on-resistance and lower reverse capacitance. Using TCAD numerical simulations, we demonstrate that the SGTMOSFET exhibits about 30% lower specific on-resistance and about five times reduction in the reverse capacitance when compared to a conventional TG-MOSFET with similar breakdown voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信