基于粒子群优化的分类特征选择

Lucija Brezočnik
{"title":"基于粒子群优化的分类特征选择","authors":"Lucija Brezočnik","doi":"10.1109/EUROCON.2017.8011255","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for the problem of processing high-dimensional data. When one has thousands of features (attributes) in a dataset, it is hard to achieve an efficient feature selection. To cope with this problem, we propose the use of a binary particle swarm optimization algorithm combined with the C4.5 as a classifier in the fitness function for the selection of informative attributes. The results obtained on 11 datasets were analyzed statistically and reveal that the proposed method, called BPSO+C4.5, outperforms known classifiers, i.e., C4.5, Naive Bayes, and SVM.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Feature selection for classification using particle swarm optimization\",\"authors\":\"Lucija Brezočnik\",\"doi\":\"10.1109/EUROCON.2017.8011255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for the problem of processing high-dimensional data. When one has thousands of features (attributes) in a dataset, it is hard to achieve an efficient feature selection. To cope with this problem, we propose the use of a binary particle swarm optimization algorithm combined with the C4.5 as a classifier in the fitness function for the selection of informative attributes. The results obtained on 11 datasets were analyzed statistically and reveal that the proposed method, called BPSO+C4.5, outperforms known classifiers, i.e., C4.5, Naive Bayes, and SVM.\",\"PeriodicalId\":114100,\"journal\":{\"name\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2017.8011255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种处理高维数据问题的方法。当一个数据集中有数千个特征(属性)时,很难实现有效的特征选择。为了解决这一问题,我们提出在适应度函数中使用二元粒子群优化算法结合C4.5作为分类器来选择信息属性。对在11个数据集上得到的结果进行统计分析,发现所提出的BPSO+C4.5方法优于已知的分类器,即C4.5、朴素贝叶斯和SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection for classification using particle swarm optimization
This paper proposes a method for the problem of processing high-dimensional data. When one has thousands of features (attributes) in a dataset, it is hard to achieve an efficient feature selection. To cope with this problem, we propose the use of a binary particle swarm optimization algorithm combined with the C4.5 as a classifier in the fitness function for the selection of informative attributes. The results obtained on 11 datasets were analyzed statistically and reveal that the proposed method, called BPSO+C4.5, outperforms known classifiers, i.e., C4.5, Naive Bayes, and SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信