离散事件建模和仿真方面改进机器学习系统

L. Capocchi, J. Santucci, B. Zeigler
{"title":"离散事件建模和仿真方面改进机器学习系统","authors":"L. Capocchi, J. Santucci, B. Zeigler","doi":"10.1109/UV.2018.8642161","DOIUrl":null,"url":null,"abstract":"Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.","PeriodicalId":110658,"journal":{"name":"2018 4th International Conference on Universal Village (UV)","volume":"1784 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete Event Modeling and Simulation Aspects to Improve Machine Learning Systems\",\"authors\":\"L. Capocchi, J. Santucci, B. Zeigler\",\"doi\":\"10.1109/UV.2018.8642161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.\",\"PeriodicalId\":110658,\"journal\":{\"name\":\"2018 4th International Conference on Universal Village (UV)\",\"volume\":\"1784 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV.2018.8642161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV.2018.8642161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散事件建模与仿真(M&S)和机器学习(ML)是两个适合系统建模的框架,当它们结合在一起时,可以为系统优化提供强大的工具。本文详细介绍了如何将离散事件M&S集成到ML概念和工具中,以改进ML框架的设计和使用。给出了不同改进的概述,并在DEVS形式化的框架中实现了三个关于强化学习(RL)的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Event Modeling and Simulation Aspects to Improve Machine Learning Systems
Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited for system modeling which when combined can give powerful tools for system optimization for example. This paper details how discrete event M&S could be integrated into ML concepts and tools in order to improve the design and use of ML frameworks. An overview of different improvements are given and three concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信