一种改进的多模型粒子滤波检测前跟踪算法

Xiaoyan Ma, Dan-hua Lao, Peng Liu, Yiwei Lv, Yifan Guo, Z. Feng
{"title":"一种改进的多模型粒子滤波检测前跟踪算法","authors":"Xiaoyan Ma, Dan-hua Lao, Peng Liu, Yiwei Lv, Yifan Guo, Z. Feng","doi":"10.1109/CISS57580.2022.9971280","DOIUrl":null,"url":null,"abstract":"In the field of weak target detection and tracking, when the target maneuvers, the detection capability of the traditional Multiple-Model (MM) Particle Filter (PF) Track-Before-Detect (TBD) algorithm decreases and the calculation amount of the algorithm increases. In this paper, an improved MM-PF-TBD algorithm is proposed. By adding the Constant Acceleration (CA) model, the Coordinate Turn (CT) model with variable turning rate and the Quasi-Monte Carlo (QMC) method, the improved algorithm could achieve the detection and tracking of weak maneuvering targets. Simulation results show that the detection capacity of the improved algorithm is 15% higher than that of the traditional algorithm, and the improved algorithm has more stable performance in low Signal-to-Noise Ratio (SNR) environment.","PeriodicalId":331510,"journal":{"name":"2022 3rd China International SAR Symposium (CISS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Multi-model Particle Filter Track-Before-Detect Algorithm\",\"authors\":\"Xiaoyan Ma, Dan-hua Lao, Peng Liu, Yiwei Lv, Yifan Guo, Z. Feng\",\"doi\":\"10.1109/CISS57580.2022.9971280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of weak target detection and tracking, when the target maneuvers, the detection capability of the traditional Multiple-Model (MM) Particle Filter (PF) Track-Before-Detect (TBD) algorithm decreases and the calculation amount of the algorithm increases. In this paper, an improved MM-PF-TBD algorithm is proposed. By adding the Constant Acceleration (CA) model, the Coordinate Turn (CT) model with variable turning rate and the Quasi-Monte Carlo (QMC) method, the improved algorithm could achieve the detection and tracking of weak maneuvering targets. Simulation results show that the detection capacity of the improved algorithm is 15% higher than that of the traditional algorithm, and the improved algorithm has more stable performance in low Signal-to-Noise Ratio (SNR) environment.\",\"PeriodicalId\":331510,\"journal\":{\"name\":\"2022 3rd China International SAR Symposium (CISS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS57580.2022.9971280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS57580.2022.9971280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在弱目标检测与跟踪领域,当目标机动时,传统的多模型粒子滤波(Multiple-Model Particle Filter, PF) TBD算法的检测能力下降,算法的计算量增加。提出了一种改进的MM-PF-TBD算法。该算法通过加入恒加速度(CA)模型、变转弯速率坐标转弯(CT)模型和准蒙特卡罗(QMC)方法,实现了对弱机动目标的检测与跟踪。仿真结果表明,改进算法的检测能力比传统算法提高15%,并且在低信噪比环境下具有更稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Multi-model Particle Filter Track-Before-Detect Algorithm
In the field of weak target detection and tracking, when the target maneuvers, the detection capability of the traditional Multiple-Model (MM) Particle Filter (PF) Track-Before-Detect (TBD) algorithm decreases and the calculation amount of the algorithm increases. In this paper, an improved MM-PF-TBD algorithm is proposed. By adding the Constant Acceleration (CA) model, the Coordinate Turn (CT) model with variable turning rate and the Quasi-Monte Carlo (QMC) method, the improved algorithm could achieve the detection and tracking of weak maneuvering targets. Simulation results show that the detection capacity of the improved algorithm is 15% higher than that of the traditional algorithm, and the improved algorithm has more stable performance in low Signal-to-Noise Ratio (SNR) environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信